- Imprimer
- Partager
- Partager sur Facebook
- Share on X
- Partager sur LinkedIn
Séminaire
Le 17 juin 2021
« Minimum Distance Belief Updating with General Information »
Séminaire en ligne
Le jeudi 17 juin à 13 heures, nous aurons le plaisir d'accueillir pour notre séminaire en ligne Adam Dominiak, professeur d'économie à l'université d'état de Virginie - Virginia Tech.
Titre de sa présentation : « Minimum Distance Belief Updating with General Information » :
Résumé :
We study belief revision when information is given as a set of relevant probability distributions. This exible setting encompasses (i) the standard notion of information as an event (a subset of the state space), (ii) qualitative information (\A is more likely than B"), (iii) interval information (\chance of A is between ten and twenty percent"), and more. In this setting, we behaviorally characterize a decision maker (DM) who selects a posterior belief from the provided information set that minimizes the subjective distance between her prior and the information. We call such a DM a Minimum Distance Subjective Expected Utility (MDSEU) maximizer. Next, we characterize the collection of MDSEU distance notions that coincide with Bayesian updating on standard events. We call this class of distances Generalized Bayesian Divergence, as they nest Kullback-Leibler Divergence. MDSEU provides a systematic way to extend Bayesian updating to general information and zero-probability events. Importantly, Bayesian updating is not unique. Thus, two Bayesian DM's with a common prior may disagree after common information, resulting in polarization and speculative trade. We discuss related models of non-Bayesian updating.
Les informations de connexion ont été envoyés aux membres du GAEL, pour les participants externes, nous vous invitons à faire la demande auprès des animateurs :
- oana.ionescu-riffauduniv-grenoble-alpes.fr (Oana Ionescu)
- paolo.crosettoinrae.fr (Paolo Crosetto)
Date
13h
- Imprimer
- Partager
- Partager sur Facebook
- Share on X
- Partager sur LinkedIn