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Abstract

The expansion of intermittent electricity increases supply variability and requires
greater flexibility from consumers. This results in welfare losses for these agents, which
can nevertheless be mitigated by energy storage. Our model analyzes these welfare con-
sequences in the context of short-term variability in renewable energy given fixed dis-
patchable and storage capacities. We explore an optimal control problem that determines
a welfare-maximizing electricity consumption path by adjusting dispatchable and stored
energy throughout the short-term production cycle of renewables. This optimization
problem identifies three regimes (no storage and active storage, with or without capacity
constraints) and provides the associated consumer welfare over this cycle. Under all three
regimes, a certain degree of consumer flexibility is part of the optimal solution and entails
welfare losses. Active storage reduces these losses but cannot eliminate them completely
due to the energy conversion losses induced by this activity. However, when storage
capacity is constrained, a proactive adjustment of this capacity can offset the losses.
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1. Introduction

The ambition of achieving net-zero greenhouse gas emissions by 2050, as pledged by
the European Union and other global actors, has accelerated the deployment of renewable
energy sources (IEA 2024). Yet, the intermittency of these sources, particularly in power
generation, leads to variability in energy supply. Such imbalances between supply and
demand are often managed through flexible generation, typically provided by dispatchable
fossil-fueled plants (IEA 2020), though this reliance directly conflicts with decarbonization
goals. Another way to maintain electricity balance is on the demand side through dynamic
pricing mechanisms such as real-time pricing, which encourage consumers to adjust their
consumption in response to supply variability (IRENA 2019). However, this raises a
fundamental question: Should the burden of adjusting to supply variability rest primarily
on consumers?

Alongside demand-side adjustments, energy storage can play a key role in smoothing
the variability of renewable generation, thereby reducing the pressure on consumers to
respond to such fluctuations (Jiang et al. 2014, Denholm 2015, Lund et al. 2015, Maghami
et al. 2024). This role is particularly relevant in a context where consumers are increasingly
expected to adjust their consumption patterns instantaneously to short-term variations
in supply (Cabot and Villavicencio 2024). Building on this, the present work starts
from the premise that storage of surplus renewable energy can act as an alternative
to dispatchable generation and limit the need for short-term demand-side adjustments.
Hence, our analysis adopts a short-term perspective, providing a framework to analyze
flexibility and efficiency in balancing supply and demand under renewable variability.

Within this short-term focus, we examine a single production cycle driven by inter-
mittent renewables. We therefore abstract from long-term energy transition issues, such
as investment and capacity expansion decisions aimed at overcoming renewable intermit-
tency, as explored by Ambec and Crampes (2019), Helm and Mier (2021), and Pommeret
and Schubert (2022). Instead, we conduct our analysis within a fixed-capacity framework
to study how storage and demand-side adjustments jointly mitigate supply variability at
each instant of the cycle. In this context, flexibility is understood as the coordination
of consumption with electricity generation and storage facilities, rather than shifts in de-
mand in response to price signals.1 As in Pommeret and Schubert (2022), we adopt the
perspective of a social planner but rather take a short-term view and study the optimal
allocation of electricity for consumption under fixed generation and storage capacities.
This approach allows us to value storage in terms of consumer welfare rather than solely
for its role in cost-minimizing generation, which has been the primary focus of the broader
literature (e.g., Crampes and Moreaux 2010, Carson and Novan 2013, Steffen and Weber
2013, Sioshansi 2014, Zerrahn et al. 2018).

Our main objective is to study how different sources of electricity are valued by con-

1For an overview of the literature on demand-side response to price signals, see, for instance, Boren-
stein 2005, Borenstein and Holland, 2005, Joskow and Wolfram 2012, Puller and West 2013, Ambec and
Crampes 2021, and Schittekatte et al. 2024.
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sumers and to highlight the welfare effects attributable to energy storage. In particular,
we find that substituting dispatchable energy with renewables–while maintaining the total
energy supply unchanged–reduces consumer welfare. This reduction arises because the
variability of renewable generation translates into greater fluctuations in the optimal con-
sumption path, which consumers must accommodate. However, active storage mitigates
this effect by allowing surplus energy to be stored and dispatched when needed, thereby
smoothing consumption and reducing welfare losses. Furthermore, when storage capacity
is binding, a moderate expansion can fully offset the negative welfare effect, underscoring
its role in supporting the integration of intermittent renewables from a consumer welfare
perspective.

We formalize these results through the resolution of a theoretical model in which the
social planner faces a constrained intertemporal allocation problem: how to distribute
limited energy resources–dispatchable generation, intermittent renewable production, and
stored energy subject to conversion losses–to maximize consumer utility over a single
production cycle. This cycle represents a repetitive pattern of renewable generation with
a peak around which output fluctuates, reflecting the intermittency of resources such as
wind or sunlight (see Helm and Mier 2021). Formulated as a standard optimal control
problem, the model determines the optimal electricity consumption path under three
regimes: no storage, non-binding storage and binding storage capacities.

The no storage case occurs because the potential welfare gain from transferring en-
ergy from peak production is outweighed by conversion losses. Consumer demand is
met by combining intermittent renewable generation with dispatchable energy. At each
instant, consumption follows renewable output when it is high and is supplemented by
dispatchable energy when renewable production falls short. This regime first illustrates
how dispatchable generation, together with demand-side adjustment, can accommodate
renewable variability. Second, it provides a baseline for assessing the welfare effects of
adding storage, particularly since a higher share of renewable energy substituting dis-
patchable generation reduces consumer welfare.

In the second regime, storage is abundant. Unlike the previous case, where all con-
sumption is directly supplied by renewable and dispatchable energy, here the planner can
shift energy from periods of high renewable production to periods of scarcity without
hitting the storage limit. This results in a consumption path with two distinct levels: a
lower level when renewable output is insufficient and is supplemented by stored and dis-
patchable energy, and a higher level when renewable production is abundant and energy
is being stored. This regime demonstrates that storage can partially offset the variabil-
ity of renewable energy and reduce welfare losses as the share of renewables replacing
dispatchable generation increases.

Finally, we consider the case when storage is used but reaches its capacity limit. In
this case, the social planner would like to shift energy from periods of high renewable
output to periods of low output, but the storage constraint prevents a full transfer. As
a result, the levels of consumption during low and high demand periods are determined
not only by renewable and dispatchable supply but also by the storage limit. The lower
consumption level falls below the threshold observed when storage is unconstrained, while
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the higher level reflects the maximum energy that can be stored. This regime shows how
binding storage capacity restricts the planner’s ability to smooth consumption over time,
with the optimal consumption path and storage strategy jointly shaped by dispatchable
energy, renewable capacity, and storage size. Furthermore, it shows that a moderate
expansion of storage capacity can fully offset the welfare losses associated with substituting
dispatchable generation with renewables.

Taken together, the three regimes clarify that while consumers inevitably bear part of
the adjustment burden from renewable variability, this burden can be alleviated through
storage. In addition, each regime is associated with a distinct level of consumer welfare,
allowing us to directly assess how variations in energy mixes, including storage capacities,
shape consumption patterns and overall consumer welfare.

The rest of the paper is organized as follows. In Section 2, we present the main
features of the model followed by the definition of the optimal electricity consumption
path in Section 3. We then characterize this path under three regimes: no storage (Section
4), non-binding storage (Section 5), and binding storage (Section 6). A welfare analysis
across different energy mixes is provided in Section 7 and Section 8 discuss some broader
implications of our results. The paper concludes in Section 9. All proofs are relegated to
the appendices.

2. The model

We consider a social planner who is concerned with the optimal allocation of electricity
for consumption in an economy endowed with three technologies: dispatchable power
plants, renewable generators and energy storage systems.

The consumption side is represented by a consumer2 who derives utility from elec-
tricity consumed over a period of time which we normalize to the interval [0, 1]. This
normalization aligns with the temporal cycle of the renewable energy production, as ex-
plained later in this section. Our focus is therefore on analyzing the consumer’s electricity
consumption path over [0, 1]. We assume that the utility, U , obtained from an entire con-
sumption path, x (·), is the integral over the time interval t ∈ [0, 1] of the instantaneous
utility, u (x (t)), where x (t) is the instantaneous electricity consumption. Given the short
duration of the cycle, intertemporal discounting is considered negligible, and the utility
function is specified as:

U (x (·)) =
∫ 1

0

u (x (t)) dt (1)

We model u (x) as an increasing and concave function that satisfies the Inada conditions:
u′ (x) > 0, limx→0 u

′ (x) = ∞, limx→∞ u′ (x) = 0 and u′′ (x) < 0.

2This representative agent assumption is formulated for explanatory simplicity. Section 8.3 shows
that, within our specific problem, this framework is equivalent to a setting involving several heterogeneous
consumers.
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As we do not impose any functional form on consumption dynamics, the consumer is,
in principle, free to vary her consumption along its path. However, it can be observed
that the consumer prefers a constant path. Since u is concave, Jensen’s inequality implies
that a constant consumption path equal to the mean, xcst, of any fluctuating consumption
path x(·) yields at least as much utility as the fluctuating path itself.

U
(
xcst
)
≥ U (x (·)) , where xcst =

∫ 1

0

x (t) dt (2)

Nevertheless, due to fluctuations in renewable production, it may not always be possi-
ble for the consumer to achieve a perfectly constant stream of consumption. In such cases,
it is useful to consider the intertemporal marginal rate of substitution (MRS) between
any two periods t and t′. In our model, the intertemporal MRS does not depend on the
entire consumption path but only on the consumption levels at times t and t′:

MRSx(t)/x(t′) =
u′ (x (t′))

u′ (x (t))
, ∀t, t′ ∈ [0, 1] (3)

We hence use the MRS in our analysis to characterize how the consumer is willing to
substitute consumption intertemporally in response to fluctuations.

To ensure the provision of electricity required for consumption, the social planner
considers three technologies, each with capacities fixed at an exogenous level.

The first is a renewable technology with installed capacity R. The volume of electricity
it produces varies over time due to uncontrollable natural factors such as wind speed or
solar radiation. To model this variability, we define a time-varying unit productivity
function, ϵ (t), which represents the proportion of a unit of installed capacity utilized
for electricity production at each instant. We assume that this renewable productivity
exhibits a peak, ϵM , around which it varies in a repetitive cycle over time. To simplify
the analysis, we normalize the minimum of ϵ (t) to zero so that ϵ (t) ∈ [0, ϵM ]. We also
normalize the duration of the cycle to 1. This also explains the earlier alignment of the
temporal cycle of the consumer’s electricity consumption to [0, 1]. More formally, if TM ∈
[0, 1] denotes the time at which renewable production reaches its peak, we have ϵ (0) =
ϵ (1) = 0 and ∀t ∈ (0, TM), ϵ′ (t) > 0 while for ∀t ∈ (TM , 1), ϵ′ (t) < 0. The instantaneous
volume of electricity production from this technology at any time t is therefore ϵ (t)R
so that the total volume of renewable production over the time period [0, 1] is given by
R
∫ 1

0
ϵ (t) dt.

The second technology is a dispatchable technology, where dispatchability refers to
the ability to control the energy resource, allowing electricity production to be adjusted
freely at any instant.3 Given that the interval [0, 1] is a normalized representation of a

3This is characteristic of conventional power plants such as nuclear, coal, and gas, where fuel input
can be controlled to adjust electricity output.
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short-term cycle in our analysis and that the installed capacity of the technology is fixed,
we assume it generates a total volume D of electricity over the period. So, while this
total volume can be allocated flexibly over time, the total quantity dispatched across the
interval must be equal to D. Letting d (t) denote the instantaneous dispatch at time t,
this constraint is formalized as: ∫ 1

0

d (t) dt = D (4)

We also have an energy storage technology of an installed capacity S that does not
produce electricity but rather stores it for later use. We denote by s+ (t) the volume of
energy supplied to the storage system at time t and s−(t) the volume withdrawn from
it. The storage process is subject to conversion inefficiencies: it takes σ+ > 1 units
of electricity to store one unit of energy and only a fraction σ− ∈ (0, 1) of each unit
withdrawn from storage is effectively usable for consumption. Accordingly, the overall
round-trip efficiency is given by σ−

σ+ < 1, capturing the total energy losses incurred in the
storage and discharge process. To ensure temporal feasibility over the cycle, we assume
that the storage system is empty at both the beginning and end of the period. This
implies that the net accumulation of stored energy over the interval is zero:∫ 1

0

(
s+(t)− s−(t)

)
dt = 0 (5)

Moreover, the planner is constrained by the system’s capacity, which limits the total
volume of electricity that can be allocated to storage over the period:∫ 1

0

s+(t) dt ≤ S (6)

Also, storage decisions are not tied to strict chronological ordering. It may be optimal,
for example, to withdraw energy early in the cycle—before any has technically been
stored—if this helps achieve a smoother consumption path. This apparent paradox reflects
the stationarity of the model where time represents position within a cycle rather than
absolute sequence, and all decisions are made consistently within this closed temporal
structure.

Finally, we denote by e = (D,R, S) ∈ E the energy mix which represents the short-
term exogenous capacity composition of the supply side. Since our analysis focuses on
the short-term consumption adjustments induced by fluctuations in renewable production,
we introduce two additional assumptions on this set of parameters. These assumptions
ensure that neither the storage capacity nor the available dispatchable energy is sufficient
to fully cover the fluctuations in electricity production.

The first condition simply says that the maximum storage capacity, including conver-
sion losses, is bounded above by the total renewable energy produced during the cycle

5



and available for storage. This leads to the following constraint:

σ+S ≤ R

∫ 1

0

ε(t) dt (7)

The second condition rules out cases in which dispatchable energy is sufficiently abun-
dant to offset fluctuations caused by renewable production. Since the consumer is averse
to fluctuations in electricity consumption (see Eq.(2)), the planner must, in such cases,
be able to deliver a constant flow of consumption c throughout the entire period. More-
over, this constant flow must be greater than the maximum renewable production, i.e.,
c > εMR. However, feasibility over the whole cycle requires that the total quantity of
dispatchable energy covers this constant consumption path net of renewable production
so that: D = c−R

∫ 1

0
ε(t) dt4. Since c > εMR, this case is excluded if we assume:

D ≤ R

∫ 1

0

(εM − ε(t)) dt (8)

3. The optimal electricity consumption path

The social planner faces a constrained intertemporal allocation problem: how to dis-
tribute limited energy resources—dispatchable production, intermittent renewable output,
and imperfectly efficient storage—so as to maximize the representative consumer’s utility
from electricity consumption over the cycle [0, 1]. This optimal consumption path solves:

W (e) = max
(d(t),s+(t),s−(t))

∫ 1

0

u(d(t)− σ+s+(t) + σ−s−(t) + ε(t)R︸ ︷︷ ︸
x(t)

)dt (9)

subject to the 3 iso-perimetric constraints given by Eqs.(4),(5) and (6). Moreover, each
of these constraints can be replaced by a differential equation on [0, 1] with terminal state
conditions. Hence, for Eqs.(4),(5) and (6), we respectively obtain:

∫ 1

0
d(t)dt = D∫ 1

0
(s+(t)− s−(t)) dt = 0∫ 1

0
s+(t)dt ≤ S

⇔


Ḋ(t) = −d(t), D(0) = D, D(1) = 0

Σ̇(t) = s+(t)− s−(t), Σ(0) = Σ(1) = 0

Ṡ(t) = −s+(t), S(0) = S, S(1) ≥ 0

(10)

This leads to a standard optimal control problem with 3 state variables. If we denote by
λD(t), λΣ(t) and λS(t) the associated co-states, the Hamiltonian writes:

H = u(x(t))− λD(t)d(t) + λΣ(t)
(
s+(t)− s−(t)

)
− λSs

+(t) (11)

Moreover, if we denote respectively by µd(t), µs+(t) and µs−(t) the multipliers associated
to the non-negativity conditions on d(t), s+(t) and s−(t), the Lagrangian associated to
this Hamiltonian becomes:5

4Recall that we work on [0, 1], so that
∫ 1

0
c dt = c.

5Since we have assumed that limx→0 u
′(x) = +∞, we do not consider the constraint x ≥ 0. It can

easily be shown that this one is always satisfied.
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L = H + µd(t)d(t) + µs+(t)s
+(t) + µs−(t)s

−(t) (12)

Let us now turn to the optimality conditions starting with the dynamics of the co-
states. As is usual with isoperimetrical constraints, the co-states are constant and using
the transversality conditions, we have:

λ̇D(t) = − ∂L
∂D

= 0, λD(1) free (13)

λ̇Σ(t) = − ∂L
∂Σ

= 0, λΣ(1) free (14)

λ̇S(t) = −∂L
∂S

= 0, λS(1)S(1) = 0, λS(1), S(1) ≥ 0 (15)

Hereafter, we consider the co-states as constant. It follows that the control variables are
optimal if we have:

∂L
∂d

= u′(x(t))− λD + µd(t) = 0 (16)
∂L
∂s+

= −σ+u′(x(t)) + λΣ − λS + µs+(t) = 0 (17)
∂L
∂s−

= σ−u′(x(t))− λΣ + µs−(t) = 0 (18)

and if we satisfy the associated slackness conditions:

µd(t)d(t) = 0, µd(t) ≥ 0, d(t) ≥ 0 (19)
µs+(t)s

+(t) = 0, µs+(t) ≥ 0, s+(t) ≥ 0 (20)
µs−(t)s

−(t) = 0, µs−(t) ≥ 0, s−(t) ≥ 0 (21)

Moreover, with regard to this optimization problem, we can immediately observe that
all the constraints are linear. So, if we can show that the Hamiltonian is concave with
respect to the control and the stock variables, we obtain the following Mangasarian-type
of sufficient conditions:

Proposition 1. If, for a continuous and piecewise differentiable control path given by
(d(t), s+(t), s−(t)), there exist constant co-states (λD, λΣ, λS), and continuous and piece-
wise differentiable multipliers (µd(t), µs+(t), µs−(t)) that satisfy Eqs.(10), (15) and (16)
to (21), then (d(t), s+(t), s−(t)) is a solution to the previous problem.

From the solution to the optimization problem, several features of the optimal allo-
cation follow immediately. In particular, consumption may be constant over some time
intervals and certain combinations of controls are ruled out.

First, suppose that dispatchable energy is used over some interval (t, t′), i.e., d(t) > 0.
Then, by the slackness condition (19), we have µd(t) = 0 which implies that consumption
x(t) is constant over this interval since x(t) = u−1(λD) from Eq.(16). Similarly, if storage
is used over another interval (t, t′), it follows from the corresponding slackness condition,
(20) or (21), that either µs+(t) = 0 or µs−(t) = 0. In that case, consumption is again
constant as the co-states in Eqs.(17) and (18) are constant.

Also, we obtain further restrictions: if storage and discharge occur simultaneously, one
can always improve the allocation by setting the smallest of the two to zero and adjusting
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the other so as to preserve net storage. This reduces conversion losses and therefore
increases consumption over the cycle. Finally, if production comes from dispatchable
generation, storing part of it (s+ > 0) would convert dispatchable energy d(t) into stored
electricity recovered with efficiency σ−/σ+ < 1, resulting in a net loss. This strategy is
clearly dominated.

The next Lemma summarizes these observations.

Lemma 1. On any interval (t, t′), the following properties hold:
(i) If dispatchable production is used, then µd(t) = 0 and consumption is constant with
x(t) = c̄.
(ii) If storage is used, then either µs+(t) = 0 or µs−(t) = 0 and consumption is again
constant.
(iii) Storage and discharge cannot occur simultaneously: s+(t) s−(t) = 0.
(iv) Dispatchable production and storage cannot occur simultaneously: s+(t) d(t) = 0.

4. Conversion losses vs. storage

This section focuses on scenarios without energy storage due to conversion losses and
low fluctuations in renewable energy production. The main objective is to characterize
the conditions under which this case arises and, conversely, those under which storage
becomes part of the optimal electricity allocation problem.

We have seen in the model section that some energy mixes e are ruled out. In par-
ticular, we exclude the case in which storage is not needed because dispatchable energy
is sufficiently large relative to renewable generation to sustain a constant consumption
stream ca that lies above the peak of renewable production, εMR, thereby fully com-
pensating renewable-induced fluctuations in consumption. But this raises the following
question: if a feasible constant consumption path does not reach the peak of renewable
generation, i.e., ca < εMR, does storage necessarily take place? This is where the con-
version losses associated with storage come into play. In fact, one unit of electricity
stored—for example, during a production peak—yields only a potential electricity con-
sumption of σ−

σ+ < 1 units when it is withdrawn. This prompts the question of whether
it is in the interest of consumers to transfer electricity from the peak of renewable gen-
eration (without dispatchable production), εMR, to a lower constant consumption path,
ca < εMR, supported by the use of dispatchable energy. Recall that the marginal rate
of substitution, MRSca/ϵMR = u′(εMR)

u′(ca)
, measures the increase in consumption at ca that

keeps utility constant following a one-unit decrease in consumption at the peak produc-
tion, εMR. Hence, if the quantity of electricity that can actually be transferred due to
conversion losses, σ−

σ+ , is less than MRSca/ϵMR, no storage occurs. We now introduce the
level of electricity consumption x̄ < εMR given by:

MRSx̄/ϵMR = u′(εMR)
u′(x̄)

= σ−

σ+ ⇔ x̄ = (u′)
−1
(

σ+

σ−u
′ (εMR)

)
(22)

Since MRSc/ϵMR increases with c, x̄ can be interpreted as the highest consumption plateau
at which storage occurs. Conversely, if the optimal consumption path x(t) solving program
(16) satisfies x(t) ≥ x̄, no storage takes place.
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x(t)

0 T̃ a
1 T̃ a

2
1

x̄

c̃a

ϵMR

x̃a(t)

da(t)

Optimal consumption path

Total dispatchable energy

x̄ Threshold for storage activation

Figure 1: Consumption without storage

Two open questions remain: (1) what is the optimal consumption path in this case
and (2) under which conditions does it satisfy xa(t) ≥ x̄? As long as the dispatchable
technology is used, Lemma 1(i) ensures that the consumption path is constant at ca. We
can further conjecture that without the dispatchable generation, the renewable peak is
absorbed (see Fig. 1). The corresponding consumption path is given by:

∀t ∈ [0, 1] , x (ca, t) = max {ca, ε(t)R} (23)

In other words, the use of dispatchable energy supplements renewable production to main-
tain this constant consumption path as long as the required amount exceeds the energy
produced by the renewable technology, i.e.,

∀t ∈ [0, 1] , d (ca, t) = max {ca − ε(t)R, 0} (24)

This consumption plateau ca in nevertheless an endogenous variable since the sum of
dispatchable energy used at each t ∈ [0, 1] must be equal to the total amount D of
dispatchable energy allocated to the cycle (see the yellow area in Fig. 1). In other words,
ca satisfies: ∫ 1

0

d (ca, t) dt =

∫ 1

0

max {ca − ε(t)R, 0} dt = D (25)

Now, recall that no storage occurs if ∀t ∈ [0, 1], x(t) ≥ x̄. This simply means, by Eq.(23),
that the solution c̃a to Eq.(25) is larger than x̄. As

∫ 1

0
max {ca − ε(t)R, 0} dt increases

with ca, a necessary (and sufficient) condition ensuring that no storage occurs is given by:∫ 1

0

max {x̄− ε(t)R, 0} dt ≤ D (26)

To sum up this discussion, we can state the following:
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Proposition 2. If D ≥
∫ 1

0
max {x̄− ε(t)R, 0} dt,

(i) there exists a unique solution c̃a to Eq.(25) with the property that c̃a ≥ x̄.
(ii) the optimal electricity consumption path that solves program (57) is given by ∀t ∈ [0, 1],
x̃a (t) = max {c̃a, ε(t)R}.
(iii) the path x̃ (t) requires no storage: ∀t ∈ [0, 1], (s̃−)a(t) = (s̃+)a(t) = 0, but only the
additional use of dispatchable energy, given by ∀t ∈ [0, 1], d̃a (t) = max {c̃a − ε(t)R, 0}.

To prove this proposition, as shown in Appendix B, we first demonstrate that there
exists a unique consumption plateau c̃a ≥ x̄ that solves Eq.(25). We then verify that the
induced paths, x̃a (t) and d̃a (t), satisfy the sufficient optimality conditions provided by
Proposition 1.

Also, according to (i) of Proposition 2, the consumption plateau that solves Eq.(25) is a
function of the amounts of dispatchable energy D and renewable energy R available during
the period [0, 1]. Therefore, it is interesting to know the effect of these parameters on this
plateau c̃a(D,R). While the direction of these effects is intuitive—an increase in either D
or R raises the consumption plateau, c̃a—we explicitly derive these comparative statics
here. This derivation will be useful later in Section 7 where we study how substituting
dispatchable energy with renewable energy affects consumer welfare.

To carry out this derivation, we define the times at which consumption switches
across the plateau, as illustrated in Fig. 1. Using the properties of ε(t), we define
T̃ a
i (D,R) = ε−1

(
c̃a(D,R)

R

)
as the two solutions in t to ε(t)R = c̃a(D,R) for i = 1, 2 and

with ε′(T̃ a
1 (D,R)) > 0 and ε′(T̃ a

2 (D,R)) < 0. With these additional notations, Eq.(25)
can be rewritten as:∫ T̃a

1 (D,R)

0

(c̃a(D,R)− ε(t)R) dt+

∫ 1

T̃a
2 (D,R)

(c̃a(D,R)− ε(t)R) dt−D = 0 (27)

and becomes a differentiable identity in (D,R). A simple calculation (see Appendix F)
yields the results presented in Table 1. As expected, both derivatives are positive. How-
ever, their magnitudes differ. An increase in dispatchable energy is spread over the inter-
vals [0, T a

1 ] and [T a
2 , 1], which explains their presence in the derivatives. An increase in

renewable energy increases total energy production and redistributes dispatchable energy
over the segments where it is used.

Table 1: Comparative statics without storage

∂D ∂R

∂c̃a 1
1+T̃a

1 (D,R)−T̃a
2 (D,R)

> 0

∫ T̃ a
1 (D,R)

0 ε(t)dt+
∫ 1
T̃ a
2 (D,R)

ε(t)dt

1+T̃a
1 (D,R)−T̃a

2 (D,R)
> 0

10



5. Optimal consumption with abundant storage

Our previous discussion characterizes the case in which no storage is used, as given by
condition (26). If the opposite holds, i.e.,∫ 1

0

max {x̄− ε(t)R, 0} dt > D with x̄ given by x̄ = (u′)
−1
(

σ+

σ−u
′ (εMR)

)
(28)

we can expect that storage is used. This raises the question of what the optimal electricity
consumption path looks like in this case, particularly when storage capacity is abundant.

From Lemma 1, we know that the use of dispatchable and/or stored energy can-
not occur simultaneously with energy storage. Moreover, after accounting for conversion
losses, the remaining energy can be treated as an additional stock of dispatchable en-
ergy. This implies that stored and dispatchable energy are used together when renewable
energy production is low, whereas energy storage occurs during periods of peak renew-
able production. Lemma 1 also indicates that consumption is time-invariant whenever
dispatchable energy is used or energy is stored. Consequently, there are now two endoge-
nous consumption plateaus, c̃b1 and c̃b2. The first corresponds to periods of low renewable
energy production, relying mainly on dispatchable and stored energy, while the second
corresponds to periods of high renewable energy production, achieved through storage
(see Fig.2)

t

x(t)

0 T̃ b
1 T̃

b
3 T̃ b

4 T̃
b
2

1

x

c̃b1

c̃b2

x̄

ϵMR

x̃b(t)

db(t) + σ−(s−)b(t)

σ+(s+)b(t)

Optimal consumption path

Total dispatchable and stored energy
net of conversion losses

Total stored energy including
conversion losses

x̄ Threshold on c̃b1 for storage activation
x Threshold on c̃b1 for storage capacity

Figure 2: Consumption with abundant storage

More formally, this suggests that the optimal consumption path, illustrated in Fig.2,
takes the form:

∀t ∈ [0, 1] , x
(
cb1, c

b
2, t
)
= min

{
max{cb1, ε(t)R}, cb2

}
with cb1 < cb2 (29)

with the following features:

• supplementing renewable generation when it is low, i.e., ε(t)R < cb1, using dispatch-
able and stored energy, given by:

∀t ∈ [0, 1] , d(cb1, t) + σ−s−(cb1, t) = max
{
cb1 − ε(t)R, 0

}
(30)

11



• storing renewable energy when its production is high, i.e., ε(t)R > cb2, with the
storage path given by:

∀t ∈ [0, 1] , s+(cb2, t) =
1
σ+ max

{
ε(t)R− cb2, 0

}
(31)

• continuous adjustment between the two levels during which only renewable energy
is consumed.

The question that remains open is the identification of the two endogenous consumption
plateaus, cb1 and cb2.

We first argue that there exists a relationship between cb1 and cb2 when storage capacity
is not binding. Since energy is transferred from the consumption plateau, cb2, to the lower
plateau, cb1, without any capacity constraint, the social planner ensures that the marginal
rate of substitution between the two consumption levels is equal to the ratio of conversion
losses, as follows:

MRScb1/c
b
2
=

u′ (cb2)
u′
(
cb1
) = σ−

σ+ (32)

Otherwise, the planner has an incentive to adjust these two consumption levels to im-
prove the consumer’s situation, either by increasing or decreasing storage. Therefore, the
following relationship between cb1 and cb2 must hold:

cb2 = f(cb1) = (u′)
−1
(

σ−

σ+u
′(cb1)

)
(33)

We can even note that this function is increasing since:

f ′(cb1) =
σ−

σ+

(
u′′
(
(u′)

−1
(

σ−

σ+u
′(cb1)

)))−1

u′′(cb1) > 0 (34)

The existence of this relationship has several consequences. As expected, we can claim
that cb2 > cb1 since MRScb1/c

b
2

is decreasing in cb2 and MRScb1/c
b
1
= 1 > σ−

σ+ . This confirms
the idea that when storage occurs, the consumer increases her consumption to partially
limit conversion losses. Moreover, consistency requires that the consumption level at
which storage occurs, cb2, is lower than the maximum renewable energy production, i.e.,
cb2 < εMR. Since f(cb1) is increasing, Eq.(22) implies that cb1 < x̄. This means that
the consumption plateau at which dispatchable energy is used is lower than smallest
consumption plateau, x̄, introduced in the previous section for which no storage occurs.
This validates the idea that the condition given by Eq.(28) is a minimal one ensuring the
existence of storage.

It now remains to show how the endogenous plateau cb1 is determined. At this level
of consumption, renewable energy production is insufficient and the resulting gap is in-
stantaneously covered by a combination of dispatchable and stored energy (net of the
conversion losses), in the amount max

{
cb1 − ε(t)R, 0

}
, ∀t ∈ [0, 1] (see Eq.(30)). These en-

ergy sources, however, are available only in limited quantities over the renewable energy

12



cycle. Dispatchable energy over [0, 1] is limited to D while under our stationarity assump-
tion, stored energy is limited by the provision made during peak renewable production.
Using Eqs.(30) and (31), this leads to the following condition:∫ 1

0

max
{
cb1 − ε(t)R, 0

}
dt = D + σ−

∫ 1

0

1
σ+ max

{
ε(t)R− f(cb1), 0

}
dt (35)

However, recall that the main argument of this section is based on the assumption that
the storage capacity is not binding. Using Eqs.(31) and (33), this requires that

∫ 1

0

s+(f(cb1), t)dt < S. So let us now introduce a second threshold x for which the stor-
age capacity is saturated, i.e.,∫ 1

0

s+(f(x), t)dt =

∫ 1

0

max {ε(t)R− f(x), 0} = S (36)

It can be shown that this unique threshold satisfies x < x̄ and that for cb1 ≥ x,
the storage capacity is not strictly binding. This observation yields a condition on the
parameters of the model that ensures the capacity constraint is never binding. This
condition states that if the sum of dispatchable energy, D, and storage capacity net
of conversion costs, σ−S, is greater than the amount of energy required to sustain a
consumption plateau at x, then the storage capacity is not binding. This condition can
be written as: ∫ 1

0

max {x− ε(t)R, 0} dt ≤ D + σ−S (37)

The following proposition summarizes this discussion.

Proposition 3. If the conditions given by Eqs.(28) and (37) are verified, then
(i) there exists a unique solution, c̃b1, to Eq.(35) with the property that x ≤ c̃b1 < x̄. The
second consumption plateau is given by c̃b2 = (u′)−1

(
σ−
σ+

u′(c̃b1)
)
.

(ii) the optimal electricity consumption path which solves program (57) is given by ∀t ∈
[0, 1], x̃b (t) = min

{
max

{
c̃b1, ε(t)R

}
, c̃b2
}
.

(iii) the optimal storage strategy occurs during peak renewable production. It is given by
∀t ∈ [0, 1], (s̃+)b(t) = 1

σ+ max
{
ε(t)R− c̃b2, 0

}
and the storage capacity is non-binding.

(iv) there are several ways to allocate dispatchable and stored energy as long as ∀t ∈ [0, 1],
d̃b(t) + σ−(s̃−)b(t) = max

{
c̃b1 − ε(t)R, 0

}
,
∫ 1

0
d̃b(t)dt = D and

∫ 1

0
(s̃−)b(t)dt =

∫ 1

0
s̃+(t)dt.

Point (iv) indicates that the solution to the optimization problem is not unique. This
is not surprising: once stored, electricity effectively functions as an alternative source
of dispatchable energy. The two types of energy can therefore be used indifferently to
reach the consumption plateau c̃b1 corresponding to low renewable energy production. In
Appendix D, we show that any continuous and positive selection satisfying the conditions
given by (iv) of Proposition 3 can be part of the optimal solution.

As in the previous section, we now characterize the effect of a change in dispatchable or
renewable energy on the two consumption plateaus, cb1 (D,R) and cb2 (D,R). To do this,

13



we introduce the four switching times given respectively by T̃ b
i (D,R) = ε−1

(
c̃b1(D,R)

R

)
,

i = 1, 2 and T̃ b
i (D,R) = ε−1

(
c̃b2(D,R)

R

)
, i = 3, 4 (see Fig.2). Using these notations, Eq.(35)

now writes: ∫ T̃ b
1 (D,R)

0

(
c̃b1(D,R)− ε(t)R

)
dt+

∫ 1

T̃ b
4 (D,R)

(
c̃b1(D,R)− ε(t)R

)
dt

+σ−

σ+

∫ T̃ b
3 (D,R)

T̃ b
2 (D,R)

(
c̃b2(D,R)− ε(t)R

)
dt−D = 0 (38)

and by Eq.(33), we know that:

c̃b2(D,R) = f(c̃b1(D,R)) = (u′)
−1
(

σ−

σ+u
′(c̃b1(D,R))

)
(39)

The results described in Table 2 follow from the differentiation of these two equations
with respect to D and R (see Appendix F). Unsurprisingly, we again find that c̃b1(D,R)
increases in both D and R simply because, in each case, more electricity is available. The
results for c̃b2(D,R) follow from the positive relationship between c̃b2(D,R) and c̃b1(D,R),
i.e. f ′(c̃b1) > 0 (see Eq.(34)). We use these results in the discussion of the consumer’s
welfare in Section 7.

Table 2: Comparative statics with non binding storage

∂D ∂R

∂c̃b1
u′′(c̃b2)

(1+T̃ b
1−T̃ b

2)u′′(c̃b2)+

(
σ−

σ+

)2

(T̃ b
4−T̃ b

3 )u
′′(c̃b1)

> 0

(∫ T̃ b
1

0 ε(t)dt+
∫ 1

T̃ b
2
ε(t)d+

σ−

σ+

∫ T̃ b
4

T̃ b
3

ε(t)dt

)
u′′(c̃b2)

(1+T̃ b
1−T̃ b

2)u′′(c̃b2)+

(
σ−

σ+

)2

(T̃ b
4−T̃ b

3 )u
′′(c̃b1)

> 0

∂c̃b2

σ−

σ+ u′′(c̃b1)

(1+T̃ b
1−T̃ b

2)u′′(c̃b2)+

(
σ−

σ+

)2

(T̃ b
4−T̃ b

3 )u
′′(c̃b1)

> 0

(∫ T̃ b
1

0 ε(t)dt+
∫ 1

T̃ b
2
ε(t)d+

σ−

σ+

∫ T̃ b
4

T̃ b
3

ε(t)dt

)
σ−

σ+ u′′(c̃b1)

(1+T̃ b
1−T̃ b

2)u′′(c̃b2)+

(
σ−

σ+

)2

(T̃ b
4−T̃ b

3 )u
′′(c̃b1)

> 0

6. Binding storage capacity

This last case is, in some respects, similar to the previous one, since storage occurs in
both cases, but here the storage capacity is binding. This suggests that the discussion at
the beginning of the previous section, based on Lemma 1 and concerning the properties
of the solution, remains applicable. In particular, the general form of the solutions is the
same as described by Eqs.(29),(30) and (31). The main difference lies in the construction
and the levels of the two consumption plateaus, cc1 and cc2, which differ from those in the
previous case. For instance, in Fig. 3, the green area corresponds to the storage capacity
augmented by the conversion losses, the lower consumption plateau now lies below x and
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1 T̃

c
3 T̃ c

4 T̃
c
2

1

c̃c1

x

c̃c2

ϵMR

x̃c(t)

dc(t) + σ−(s−)c(t)

σ+(s+)c(t)σ+S

Optimal consumption path

Total dispatchable and stored energy
net of conversion losses

Total storage capacity augmented by
conversion losses

x Threshold on c̃c1 for storage capacity

Figure 3: Consumption with binding storage

the relationship between cc1 and cc2 is more complex than in the previous section. We
therefore start by showing how cc1 and cc2 are constructed, which underlies the differences
highlighted.

First, note that a binding storage capacity restricts the transfer of electricity consump-
tion over time, notably between the two consumption plateaus cc2 and cc1. This implies
that the consumer is still willing to transfer electricity from the high consumption plateau
cc2 to the low consumption plateau cc1, but is unable to do so due to the capacity constraint.
In other words, we end up with the marginal rate of substitution between cc1 and cc2 being
below the ratio of the conversion losses. Based on equations (32) and (33), we have:

MRScc1/c
c
2
=

u′ (cc2)

u′ (cc1)
< σ−

σ+ or cc2 > (u′)
−1
(

σ−

σ+u
′(cc1)

)
> cc1 (40)

It also implies that the total energy stored at the high consumption plateau cc2 must equal
the storage capacity (see Fig. 3), i.e.:∫ 1

0

s+(cc2, t) dt =
1
σ+

∫ 1

0

max {ε(t)R− cc2, 0} dt = S (41)

This equation corresponds to Eq.(36), which, in the previous section, introduced the
lowest consumption plateau, cb1, for which storage is not binding. First, this implies that
cc2 can be deduced from our previous results by simply setting cc2 = f(x), with f(x) given
by Eq.(33). Second, since x is the threshold for cc1 below which the storage constraint
becomes binding, we must ensure that the lowest consumption plateau satisfies cc1 < x.

Finally, to characterize the optimal consumption trajectory, it remains to define cc1.
This is done by stating that the total dispatchable and stored energy required to sustain
the low-consumption plateau (the yellow area in Fig. 3) equals the sum of the dispatchable
energy and the storage capacity since the latter is now binding, i.e.:
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∫ 1

0

d̃c(t) + σ−(s̃−)c(t)dt =

∫ 1

0

max {c̃c1 − ε(t)R, 0} dt = D + σ−S (42)

Moreover, to ensure that c̃c1 <x, we require the contrary of condition (37), that is:∫ 1

0

max {x− ε(t)R, 0} dt > D + σ−S (43)

Let us, however, recall that x= f−1(cc2) and is independent of D (see Eq.(41)). This
implies that

∫ 1

0
max {x− ε(t)R, 0} dt − σ−S may be negative, particularly if S is large,

which would contradict D ≥ 0. In other words, if the storage capacity is too large, it
cannot be binding and this last case becomes vacuous. To consistently treat the three
cases, we therefore introduce, for the remainder of the paper, an additional restriction on
the set E of energy mixes, given by:∫ 1

0

max
{
f−1(cc2(R, S))− ε(t)R, 0

}
dt > σ−S with cc2(R, S) solution to Eq.(41) (44)

The following proposition summarizes our results.

Proposition 4. If the condition given by Eqs.(43) and (44) are verified, then:
(i) there exists a unique solution, c̃c1, to Eq.(42) with the property that c̃c1 < x. The second
consumption plateau is given by c̃c2 = f(x) with f(x) given by Eq.(33).
(ii) the optimal electricity consumption path which solves program (57) is given by ∀t ∈
[0, 1], x̃c (t) = min {max {c̃c1, ε(t)R} , c̃c2}.
(iii) the optimal storage strategy is limited by the storage capacity and is given by ∀t ∈
[0, 1], (s̃+)c(t) = 1

σ+ max {ε(t)R− c̃c2, 0}.
(iv) there are again several ways to affect dispatchable and stored energy as long as ∀t ∈
[0, 1], d̃c(t) + σ−(s̃−)c(t) = max {c̃c1 − ε(t)R, 0},

∫ 1

0
d̃c(t)dt = D and

∫ 1

0
(s̃−)c(t)dt = S.

Since storage is limited in this case, we examine how dispatchable energy, renew-
able generation capacity and storage capacity affect the consumption plateaus c̃c1(D,R, S)
and c̃c2(R, S). This again requires the construction of the four switching times, given by
T̃ c
i (D,R, S) = ε−1

(
c̃c1(D,R,S)

R

)
, i = 1, 2 and T̃ c

i (R, S) = ε−1
(

c̃c2(R,S)

R

)
, i = 3, 4 (see Fig.3)

and the introduction of the two identities induced by the definitions of c̃c1 and c̃2, respec-
tively. These identities are given by:∫ T̃ c

1 (D,R,S)

0

(c̃c1(D,R, S)− ε(t)R) dt

+

∫ 1

T̃ c
2 (D,R,S)

(c̃c1(D,R, S)− ε(t)R) dt−D − σ−S = 0 (45)∫ T̃ c
4 (D,R,S)

T̃ c
3 (D,R,S)

max {ε(t)R− c̃c2(R, S), 0} dt− σ+S = 0 (46)
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By differentiating these two identities with respect to D, R and S (see Appendix F),
we obtain the results presented in Table 3. As expected, c̃c1 still increases with both
dispatchable energy D and renewable capacity R. Moreover, this plateau rises with storage
capacity S. The intuition is straightforward: increasing storage capacity allows more
electricity to be stored and since stored energy is fully dispatchable, consumption increases
accordingly, i.e., to reach c̃c1. When storage is limited, the marginal rate of substitution
between c̃c1 and c̃c2 is no longer determined by the ratio of the conversion losses but by the
storage constraint. Thus, c̃c2 becomes independent of the level of dispatchable energy and
decreases with storage capacity to expand stored electricity. Finally, if renewable capacity
increases, so does peak production. With limited storage capacity, the only option is to
increase c̃c2.

Table 3: Comparative statics with binding storage

∂D ∂R ∂S

∂c̃c1
1

T̃ c
1+1−T̃ c

2

> 0

∫ T̃ c
1

0 ε(t)dt+
∫ 1
T̃ c
2
ε(t)dt

T̃ c
1+1−T̃ c

2

> 0 σ−

T̃ c
1+1−T̃ c

2

> 0

∂c̃c2 0

∫ T̃ c
4

T̃ c
3

ε(t)dt

T̃ c
4−T̃ c

3

> 0 − σ+

T̃ c
4−T̃ c

3

< 0

7. Energy mix and consumers’ welfare

This section proceeds in two steps. First, we summarize our previous results in order
to construct the consumer welfare function for various energy mixes e = (D,R, S) ∈ E
and to show that this function is continuously differentiable. This enables us, in a second
step, to assess the effect on consumer welfare of substituting dispatchable energy with
renewable energy.

7.1. The consumer welfare function
To construct this function, let us briefly review our previous results. We consider

an energy mix, e = (D,R, S) ∈ E , in which fluctuations in renewable generation affect
consumption. This is ensured by limiting both the storage capacity (see Eq.(7)) and the
availability of dispatchable energy (see Eq.(8)). We even add an additional restriction (see
Eq.(44)) ensuring that the storage constraint can be binding.6 Sections 4 to 6 identify the
subsets Ea, Eb and Ec which respectively correspond to situations without storage, with
sufficiently large storage and with binding storage capacity. If these three subsets form
a partition of the set E of the energy mix under consideration (see preliminary remarks

6If this restriction is not satisfied, it simply means that the binding-storage case is empty and that
all results associated with this case can be ignored. However, we believe it is appropriate to allow for this
situation, as storage capacities are still at an early development stage.
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in Appendix G), we can then construct the welfare function W (e) resulting from the
program outlined in Section 3.

Moreover, to unify the notation, we introduce a virtual plateau c̃a2 (e) in the no-storage
case. It is defined by the highest renewable production, i.e., ∀e ∈ Ea, c̃2 (e) = εMR. This
harmless trick enables us to define, for all e ∈ E , piecewise functions c̃1 (e) and c̃2 (e) that
describe the two consumption plateaus arising in each of the three subcases. With this
notation, the optimal consumption path, for each e ∈ E , becomes:

∀t ∈ [0, 1] , x̃ (t; e) = min {max {c̃1 (e) , ε(t)R} , c̃2 (e)} (47)

We can even calculate the consumer’s welfare for each energy mix over a renewable cycle.
This function is given by:

W (e) =

∫ 1

0

u (x̃ (t; e)) dt (48)

More interestingly, if we can show that c̃1 (e) and c̃2 (e) are continuous over the entire
domain E , then the same holds for x̃ (t; e) and W (e). We go even one step further. Using
the results in Tables 1 to 3, we compute ∂W (e) piecewise and show that this gradient
remains globally continuous. More precisely, we have the following:

Lemma 2. For all e ∈ E, we can say that:
(i) the two plateaus, c̃1 (e) and c̃2 (e), the consumption process x̃ (t; e) and the consumer’s
welfare W (e) are continuous functions.
(ii) the welfare function W (e) is at least of class C1 and its gradient is given by:

∂W (e) =

 u′ (c̃1 (e))∫ 1

0
u′ (min {max {c̃1 (e) , ε(t)R} , c̃2 (e)}) ε(t)dt

σ+u′ (c̃1 (e))max
{

σ−

σ+ − u′(c̃2(e))
u′(c̃1(e))

, 0
}

 (49)

This technical lemma leads to an interesting observation: although the different energy
sources are substitutes from the consumer’s perspective (see Eq.(57)), changes in their
availability over the renewable production cycle generate different welfare effects. Indeed,
a marginal change in one resource affects the optimal consumption path defined over [0, 1)
in a different way. An increase in dispatchable capacity provides additional consumption
outside peak production times, so its marginal contribution to welfare is evaluated through
the marginal utility of the lowest consumption plateau. An increase in renewable capacity
increases production at each t and therefore, the consumption path. The effect on welfare
is then the “sum” of the different marginal utilities along the optimal consumption path.
Lastly, storage capacity matters only when the storage constraint is binding because in
this case, σ−

σ+ > u′(c̃2(e))
u′(c̃1(e))

.

7.2. The welfare effect of energy transition on consumers
Lemma 2 also helps us understand the impact of the energy transition on consumer

welfare, particularly in the presence of a storage system. Although we cannot examine the
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transition process itself within our short-term approach, we can nevertheless study the
welfare effects of substituting dispatchable energy with renewable production capacities
while keeping total energy supply constant over the renewable production cycle. In this
setting, we essentially try to address three questions. Does such a substitution reduce
consumer welfare? Is this effect mitigated by the presence of energy storage? Finally, when
the storage capacity is binding, can this negative effect be reserved through a reasonable
expansion of that capacity?

To answer the first question, we consider any energy mix e ∈ E and simultaneously
increase renewable production capacity by ∆R while decreasing dispatchable energy avail-
ability by ∆D = −

(∫ 1

0
ε(t)
)
∆R. In this way, the total available energy remains constant

over [0, 1] and the resulting change in consumer welfare, for any ∀e ∈ E , is given by:

∆W
∆R

= −
(∫ 1

0

ε(t)

)
u′ (c̃1(e)) +

∫ 1

0

u′ (min {max {c̃1(e), ε(t)R} , c̃2(e)}) ε(t)dt

=

∫ 1

0

(u′ (min {max {c̃1(e), ε(t)R} , c̃2(e)})− u′ (c̃1(e))) ε(t)dt (50)

Now recall that c̃1(e) ≤ c̃2(e) which implies min {max {c̃1(e), ε(t)R} , c̃2(e)} ≥ c̃1(e). Since
the marginal utility u′ is decreasing, we can say that:

∆W
∆R

=

∫ 1

0

(u′ (min {max {c̃1(e), ε(t)R} , c̃2(e)})− u′ (c̃1(e)))︸ ︷︷ ︸
≤0

ε(t)dt ≤ 0 (51)

We can therefore conclude that, for any energy mix e ∈ E , replacing dispatchable energy
with additional renewable capacity while maintaining total energy generation constant
reduces consumer welfare. This result mainly stems from the fact that such a substitu-
tion increases the variability of the optimal consumption path. Let us now recall that
∂RW (e) ≥ 0. Thus, if the goal is to preserve consumer welfare, this result also suggests
that the decrease in the availability of dispatchable energy must be less than the total
increase in renewable production. In this case, from the consumers’ perspective, the total
increase in energy production over the cycle compensates for the additional fluctuations
induced by renewable generation.

We can also ask whether the presence of active storage mitigates these welfare losses. In
other words, it is interesting to compare the welfare losses of an energy mix, e ∈ Eb∩Ec, to
those of a hypothetical case in which storage is not allowed. In the latter case, the optimal
electricity allocation is similar to that described Section 4, except that it now applies to
an energy mix e ∈ Eb ∩Ec. Moreover, as can be seen in Fig.1 and in either Fig.2 or 3, the
single plateau without storage, cns(e), is lower than c̃1(e) in both cases. This follows from
the fact that, in the no-storage case (see Fig.1), the yellow area corresponds solely to the
amount of dispatchable energy. By contrast, when storage is available (see Fig.2 or 3),
this area corresponds to the sum of dispatchable and stored energy (see Appendix H for
a proof). Let us now denote the welfare losses when storage is not allowed by ∆Wns

∆R
. This
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quantity is given by Eq.(50), where c̃1(e) = cns(e) and c̃2(e) = εMR. We can therefore
construct the difference in welfare losses for each e in Eb ∩ Ec. After some manipulations
(see Appendix H), we obtain:

∆Wns

∆R
− ∆W

∆R
=

∫ 1

0

(u′ (max {min {c̃1(e), ε(t)R} , cns(e)})− u′ (cns(e))) ε(t) dt

+

∫ 1

0

(u′ (max {c̃2(e), ε(t)R})− u′ (c̃2(e))) ε(t) dt (52)

Now recall from our previous discussion that c̃1(e) ≥ cns(e), so that:

max {min {c̃1(e), ε(t)R} , cns(e)} ≥ cns(e) (53)

Moreover, we observe that max {c̃2(e), ε(t)R} ≥ c̃2(e). Since u′ < 0, both integrals in
Eq.(52) are negative, leading to ∆Wns

∆R
− ∆W

∆R
≤ 0. Given that both terms are negative, we

can conclude that the welfare losses when storage is not allowed,
∣∣∆Wns

∆R

∣∣, are greater than
the welfare losses with storage,

∣∣∆W
∆R

∣∣. Thus, we can say that active storage facilitates the
energy transition from the consumer’s perspective.

Finally, recall from Eq.(50) that any increase in storage capacity has a positive effect on
welfare as long as this capacity remains binding (i.e., when σ−

σ+ > MRSc̃1/c̃2). This implies
that the negative impact of substituting dispatchable energy with renewable energy can
be offset by a simultaneous increase in storage capacity. To illustrate this point, consider
again a situation in which renewable capacity increases by ∆R, while dispatchable capacity
decreases by

(∫ 1

0
ε(t) dt

)
∆R. We can now couple this change with an expansion of storage

capacity proportional to the change in renewable energy production over the cycle [0, 1],
given by k

(∫ 1

0
ε(t) dt

)
∆R. In this case, the resulting variation in consumer welfare is:

∆W
∆R

= −u′ (c̃1(e))

(∫ 1

0

ε(t) dt

)
+

∫ 1

0

u′ (min {max {c̃1(e), ε(t)R} , c̃2(e)}) ε(t) dt

+kσ+u′ (c̃1(e))
(

σ−

σ+ −MRSc̃1/c̃2

)(∫ 1

0

ε(t) dt

)
(54)

Since the sum of the first two terms is negative while the last term is positive due to
the binding storage capacity, we can easily identify the proportional expansion of storage
capacity that offsets the initial negative welfare effect. This proportional factor k is given
by:

k =
u′(c̃1(e))(

∫ 1
0 ε(t) dt)−

∫ 1
0 u′(min{max{c̃1(e),ε(t)R},c̃2(e)})ε(t) dt

σ+u′(c̃1(e))

(
σ−

σ+ −MRSc̃1/c̃2

)
(
∫ 1
0 ε(t) dt)

> 0 (55)

But this clearly raises the question of whether the magnitude of this factor is reasonable.
To address this issue, let us observe that min {max {c̃1(e), ε(t)R} , c̃2(e)} ≤ c̃2(e). It
follows that:
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k ≤ (u′(c̃1(e))−u′(c̃2(e)))(
∫ 1
0 ε(t) dt)

σ+u′(c̃1(e))

(
σ−

σ+ −MRSc̃1/c̃2

)
(
∫ 1
0 ε(t) dt)

= 1
σ+

1−MRSc̃1/c̃2
σ−
σ+ −MRSc̃1/c̃2

< 1 since
σ−

σ+
> 1 and σ+ > 1 (56)

In conclusion, we can state that the negative welfare effect associated with substituting
dispatchable energy sources with renewable energy sources can be offset by an increase
in storage capacity, with the required expansion being less than the additional renewable
production over the cycle.

The next proposition summarizes this discussion:

Proposition 5. If renewable energy replaces dispatchable energy over the cycle while
keeping total energy production constant, then:
(i) consumer welfare decreases in the different scenarios that we have identified.
(ii) these welfare losses are nevertheless smaller when storage is activated during the
renewable production cycle.
(iii) if storage capacity is limited, these welfare losses can be offset by adjusting the stor-
age capacity through an increment that is lower than the increase in renewable energy
production.

8. Further discussions

In this section, we discuss two extensions and a technical aspect of the model. We
first examine the optimal choice of energy capacities and then characterize the pricing
structure associated with the optimal consumption path. Finally, we explain why, in a
framework focused on consumption, it is possible to restrict attention to a representative
consumer without loss of generality.

8.1. The energy portfolio choice
In the analysis so far, we have abstracted from the costs associated with capacity

installation and the production of dispatchable energy. In order to take these into con-
sideration, we need to introduce explicit cost functions, CD, CR and CS, corresponding
respectively to dispatchable, renewable and storage capacities. Under the assumption of
stationarity, these capacity costs primarily reflect operating expenses and the amortized
capital repayment over the relevant time horizon. For dispatchable technologies, the cost
function must also include fuel expenditures required to supply D units of energy over
the cycle. This function, as in the seminal paper of Ambec and Crampes (2012), can be
taken as linear. In this simple case, the optimization program can be written as:

max
(D,R,S) ∈ E

W (D,R, S)− CD(D)− CR(R)− CS(S) (57)

where W (D,R, S) is the welfare function obtained in Lemma 2 and Ci, i = D,R, S, are
the cost functions associated with the capacity levels over the cycle. If these cost functions
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satisfy standard properties, particularly differentiability, then Lemma 2 implies that, for
interior solutions, the marginal welfare of each energy source must be equal to its marginal
cost. This generates a system of equations that can be solved to determine the optimal
energy mix.

More sophisticated specifications, such as capacity accumulation, can also be intro-
duced (see, for instance, Helm and Mier 2021 or Pommeret and Schubert 2022). Under
capacity accumulation, the cost functions CD, CR, and CS represent the investments
undertaken in each period while total installed capacity becomes the cumulative sum
of past investments, depreciated at different constant rates. This extension introduces
an intertemporal trade-off in which the social planner balances the upfront investment
costs against the consumer benefits generated by smoother consumption, enabled by the
different production technologies.

In addition, we can allow for heterogeneous dispatchable generation technologies, such
as coal, gas, or nuclear, each characterized by its own linear marginal cost. This naturally
yields the classical merit-order structure: technologies with the lowest marginal cost are
dispatched first up to their capacity constraint, followed sequentially by higher cost units
(see, for instance, Léautier 2019). The framework can be further extended by introducing
a merit order within renewable technologies (see Abrell et al. 2019), whereby the most
productive units generate first. A similar merit order can also be applied to heterogeneous
storage technologies (see Newbery 2018).

8.2. Electricity tariffs along the cycle
Throughout this work, we study the problem from the perspective of a social planner.

As long as we introduce price taking behaviors, we can even associate a competitive equi-
librium to this economy. Moreover, in the absence of externalities such as environmental
damages, the Second Welfare Theorem implies that the electricity price at the competitive
equilibrium is given by the marginal utility of the consumer along the optimal consump-
tion path. This yields a tariff structure with two constant levels, a high and a low price,
with real-time pricing between them.

When storage is present, the optimal consumption trajectory itself traces out the com-
petitive tariff (see Fig.2 or 3). In the interval [0, T1], given that the marginal utility is
decreasing in consumption, the price is constant at its upper level. In [T1, T3], the con-
sumer’s flexibility allows consumption to adjust smoothly to the rising profile of renewable
production, implying a decreasing price path up to a second plateau. In [T3, T4], the price
remains at its lower constant level, corresponding to the period of maximum renewable
availability. In [T4, T2], the price increases as renewable output falls, eventually recon-
necting with the higher plateau. Finally, in [T2, 1], the price again remains constant at
the high level. For the first regime, the tariff is straightforward with a unique off-peak
price and real time price adjustment elsewhere (see Fig.1).

Also, a key modeling assumption in our analysis is that the consumer is perfectly
flexible in her level of consumption. The tariff we derive therefore directly implements
the planner’s optimal consumption trajectory. This contrasts with the traditional Real-
Time Pricing (RTP) literature, such as Borenstein and Holland (2005), which focuses on
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how consumers adjust their load in response to supply-driven price fluctuations. In their
framework, peak demand is taken as exogenous and drives the shape of the optimal price
path, making flat pricing inefficient compared to RTP. Our results show that even under
full consumer flexibility, the efficient allocation exhibits consumption plateaus generated
by renewable, dispatchable and stored energy, which translate into fixed prices similar to
Time-of-Use (ToU) (see, for instance, Nicolson et al. 2018). Consequently, a full RTP
schedule can be closely approximated by a ToU tariff augmented with a limited amount
of real-time adjustment. The presence of storage capacities capable of storing excess
renewable energy is what leads to this tariff structure.

8.3. Back to the representative consumer assumption
Now let us show how we can, without loss of generality, restrict our attention to a

representative consumer. Suppose there are n heterogeneous consumers. Their utility
function is given by Ui (xi (·)) =

∫ 1

0
ui (xi (t)) dt, where each ui(x) is increasing, strictly

concave and satisfies the usual Inada conditions. The social planner’s problem can now
be written as:

max
((xi(t))

n
i=1,d(t),s

+(t),s−(t))

n∑
i=1

∫ 1

0

ui (xi (t)) dt (58)

This problem is subject to the same set of dynamic constraints given by Eq.(10), but with
an additional constraint. This constraint stipulates that, for each t, distributed electricity
corresponds to the amount of available energy due to a particular use of dispatchable and
stored energy, i.e.,

n∑
i=1

xi (t) = d(t)− σ+s+(t) + σ−s−(t) + ε(t)R︸ ︷︷ ︸
=X(t)

(59)

Note that the allocation of dispatchable energy and the storage strategy are independent
of how energy is distributed among consumers. This allows us to separate the questions
of distribution and production, and consider the following problem:

V (X(·)) = max
(xi(·))ni=1

n∑
i=1

∫ 1

0

ui (xi (t)) dt s.t ∀t,
n∑

i=1

xi (t) = X(t) (60)

The function V (X(·)) stands for the aggregate indirect utility to be used in the production
choice problem. In other words, it is the utility of our representative agent. We also
observe that the previous problem is separable in time. This implies that we can restrict
our attention to the sub-problem given by:

v(X) = max
(xi)

n
i=1

n∑
i=1

ui (xi) s.t
n∑

i=1

xi = X (61)

and define the aggregate indirect utility as V (X(·)) =
∫ 1

0
v (X (t)) dt. So, if v (X (t))

shares the same restrictions as those we have imposed on our representative agent, both
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approaches lead to the same results. In other words, it remains to verify that v(X(t)) is
increasing, strictly concave and satisfies the usual Inada conditions. This technical point
is verified in Appendix I.

9. Concluding remarks

In this paper, our primary focus has been the investigation into the implications on
consumer welfare of the substitution of dispatchable energy sources, mainly obtained from
fossil fuels, by renewable energy sources that are frequently intermittent in nature. We
started with two observations. On the one hand, the additional variability in supply
requires consumers to be more flexible, which leads to welfare losses. Conversely, the
development of storage capacity serves to mitigate these short-term fluctuations, thereby
curtailing such welfare losses. To address this issue, we examined how intermittent re-
newable energy generation, dispatchable power supply and energy storage work together
to determine the optimal electricity consumption path over a renewable production cycle.
We then characterized the resulting level of consumer welfare. By solving this optimal
control problem with fixed production and storage capacities, we identified three different
regimes (no storage, abundant storage, and binding storage capacity) and their corre-
sponding energy mixes. The effects on consumer welfare of replacing dispatchable energy
with intermittent renewable energy sources were then discussed using these scenarios. As
expected, consumer welfare declines with this substitution due to the need for additional
flexibility. These welfare losses are smaller when storage is active, but they nevertheless
persist. Finally, when storage capacity is limited, a moderate expansion of this capacity
can fully offset these losses.

For a more comprehensive analysis, as suggested in Section 8.1, our model would
require a deeper study of the composition of the electricity mix. In this paper, we con-
sidered only the optimal short-term adjustment of dispatchable, renewable, and storage
capacities to supply variability. A more general framework would incorporate capacity
accumulation, whereby new capacities result from investment decisions made in preced-
ing cycles. This would introduce an intertemporal trade-off across the costs of different
energy sources and yield an optimal time path for the energy mix, rather than the para-
metric analysis developed here. The resulting dynamics could then be compared with
the existing literature (see, for instance, Helm and Mier 2021 or Pommeret and Schubert
2022).

It should also be noted that our discussion of electricity prices in Section 8.2 applies
only when the conditions of the Second Welfare Theorem are satisfied. This excludes sev-
eral types of market failure, such as price making decisions or environmental externalities
which would both call for policy interventions. Regarding the latter, it is straightforward
to introduce a damage function related to the production of dispatchable energy which
is fossil-based. Such a damage function can be readily integrated into our optimization
problem, as in Pommeret and Schubert (2022). However, addressing the policy issues
induced by this externality would require explicitly modeling the price-taking behaviors
of the different agents. To address market power, we even need to go a step further by
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identifying competitive and non-competitive behaviors (e.g., Ito and Reguant 2016, Ace-
moglu et al. 2017, Andrés-Cerezo and Fabra 2025). Both market failures could also be
studied concomitantly as in García-Alaminos and Rubio (2021).

Finally, it is important to emphasize that the welfare losses highlighted in our model
stem from an aversion to consumption flexibility. Consumers prefer a constant stream
of consumption since the instantaneous utility does not depend explicitly on time but is
defined only through the consumption path. If this condition does not hold, it may be
possible to identify alternative consumption profiles, correlated or not, with the short-
term renewable production cycle. For such analyzes, one may refer to Trotta (2020) or
Reguant et al. (2025).
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Appendix A. Proof of Lemma 1

Points (i) and (ii). These follow directly from our discussion.

Point (iii). Assume that ∃ (t, t′) for which ∀t ∈ (t, t′), s+(t)s−(t) ̸= 0. In this case, s+(t) > 0, s−(t) > 0,
and, according to the slackness conditions (see Eqs.(20) and (21)), we have µs+(t) = µs−(t) = 0. But if
we sum Eq.(17) and Eq.(18), we get the following:

λS =
(
σ− − σ+

)︸ ︷︷ ︸
<0

u′(x(t))︸ ︷︷ ︸
>0

< 0 (A.1)

which contradicts the fact that λs is a non-negative constant (see Eq.(15)).

Point (iv). Now assume that ∃ (t0, t1) for which ∀t ∈ (t0, t1), s+(t)d(t) ̸= 0. It follows from the slackness
conditions given by Eqs.(19) and (20) that µd(t) = µs+(t) = 0. Using the optimality conditions given by
Eq.(16) and Eq.(17), we can therefore claim that:

−σ+λD + λΣ − λS = 0 (A.2)

Now, recall from Eq.(10) that all the stored energy is discharged during the cycle. As storage and
discharge cannot occur simultaneously (see point (iii) of this proof), ∃ (t2, t3) for which ∀t ∈ (t2, t3),
s+(t) > 0 and therefore µs−(t) = 0. From the optimality conditions given by Eq.(18) and Eq.(16) and
the slackness condition given by Eq.(19), we obtain, respectively, u′(x(t)) = λΣ

σ− and λΣ

σ− − λD ≤ 0. As
the co-states are constant on [0, 1] (see Eqs. (13) to (15)), we can say from Eq.(A.2) that:

λS = −σ+λD + λΣ ≤ −σ+λD + σ−λD < 0 (A.3)

and contradicts the fact that λs is a non-negative constant (see Eq.(15)).
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Appendix B. Proof of Proposition 1

Since the constraints of the optimization problem are linear, it remains to check that the Hamiltonian
is concave with respect to the control and stock variables. This Hamiltonian

H
(
d, s+, s−, λD, λΣ, λS , t

)
= u(d− σ+s+ + σ−s− + ε(t)R)− λDd+ λΣ

(
s+ − s−

)
− λSs

+ (B.1)

is also independent of the stock variables (D(t),Σ(t), S(t)). We only have to verify that this function is
concave with respect to the controls (d, s+, s−). A simple computation shows that its Hessian is given
by:

∂2
d,s+,s−H = u′′(x(t))

 1 −σ+ σ−

−σ+ (σ+)
2 −σ+σ−

σ− −σ+σ− (σ−)
2

 = u′′(x(t))

 1
−σ+

σ−

 [ 1 −σ+ σ− ]
(B.2)

It follows that:

∀h ∈ R3, ht · ∂2
d,s+,s−H · h = u′′(x(t))

(
h1 − σ+h2 + σ−h3

)2 ≤ 0 (B.3)

Appendix C. Proof of Proposition 2

Point (i). Let us show that:

ϕ1 (c) =

∫ 1

0

max {c− ε(t)R, 0} dt−D (C.1)

admits a unique solution c̃a with the property that c̃a ≥ x̄ = (u′)
−1
(

σ+

σ−u′ (εMR)
)
. Obviously limc→∞ ϕ1 (c) =

+∞ and, under the no storage condition (Eq.(26)), by construction limc→x̄ ϕ1 (c) ≤ 0. So, if ϕ1(c) is
increasing, there exists a unique c̃a ≥ x̄ solution to ϕ1 (c) = 0. To verify this point, divide the domain of
ϕ1 (c) into two intervals: [0, εMR) and [εMR,+∞). On the second, c ≥ εMR ≥ ε(t)R. It follows that:

∀c ∈ [εMR,+∞) , ϕ1 (c) =

∫ 1

0

(c− ε(t)R) dt−D = c−R

∫ 1

0

ε(t)dt−D (C.2)

so that ϕ′
1 (c) = 1. Let us now move to the interval [0, εMR). Since c < εMR, we can, by construction

of the cycle ε(t), assert that there exists, for each c ∈ (0, εMR), a unique couple (T1(c), T2(c)) such that
for i = 1, 2, ε(Ti)R = c. If TM denotes the time of the peak of renewable production, we also have
0 < T1(c) < TM < T2(c) < 1. Moreover, since ε(t) increases and decreases on, respectively, (0, TM ) and
(TM , 1), we can also say that T ′

1(c) > 0 and T ′
2(c) < 0. It follows that:

∀c ∈ (0, εMR) , ϕ1 (c) =

∫ T1(c)

0

(c− ε(t)R) dt+

∫ 1

T2(c)

(c− ε(t)R) dt−D (C.3)

and therefore:

ϕ′
1 (c) = T1(c) + T ′

1(c) (c− ε(t)R)t=T1(c)
+ (1− T2(c))− T ′

2(c) (c− ε(t)R)t=T2(c)

= 1− T2(c) + T1(c) > 0 since 0 < T1(c) < T2(c) < 1 (C.4)

Points (ii) and (iii). To save notation, we will omit the superscript a characterizing the case. So, let us
now construct the consumption path ∀t ∈ [0, 1], x̃ (t) = max {c̃, ε(t)R}, the allocation of dispatchable
∀t ∈ [0, 1], d̃ (t) = max {c̃− ε(t)R, 0} and the storage strategy ∀t ∈ [0, 1], s̃−(t) = s̃+(t) = 0. From
Proposition 1, if constant co-states (λ̃D, λ̃Σ, λ̃S), and continuous and piecewise differentiable multipliers
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(µ̃d(t), µ̃s+(t), µ̃s−(t)) exist and satisfy Eqs.(10), (15) and (16) to (21), then x̃ (t) is the solution to our
electricity allocation problem.

Let us start with the isoperimetrical conditions given Eq.(10). By construction of c̃, we have∫ 1

0
d̃(t)dt = D and, since s̃+(t) = s̃−(t) = 0, we satisfy

∫ 1

0
(s+(t)− s−(t)) dt = 0 and

∫ 1

0
s+(t)dt ≤ S.

Lack of storage also implies that
∫ 1

0
s̃+(t)dt = 0 < S and therefore, by Eq.(15), that λ̃S = 0. Since λ̃D is

free (see Eq.(13)), we set λ̃D = u′ (c̃).
Let us now concentrate on Eqs.(16) and (19). Since the electricity consumption is given by x̃ (t) =

max {c̃, ε(t)R} and λ̃D = u′ (c̃), Eq.(16) provides the path of µ̃d(t), given by:

∀t ∈ [0, 1] , µ̃d(t) = u′(c̃)− u′ (max {c̃, ε(t)R}) (C.5)

Obviously, µ̃d(t) ≥ 0 since c̃ ≤ max {c̃, ε(t)R} and u′′(x) < 0. It remains to verify that ∀t ∈ [0, 1],
d̃(t)µ̃d(t) = 0. Since u′′(x) < 0, we can say that ∀t ∈ [0, 1]

d̃(t) = max {c̃− ε(t)R, 0} > 0 ⇔ c̃ > ε(t)R ⇔ µ̃d(t) = u′(c̃)− u′ (max {c̃, ε(t)R}) = 0 (C.6)

and, since d̃(t) ≥ 0 and µ̃d(t) ≥ 0, we also have µ̃d(t) > 0 ⇔ d̃(t) = 0. It follows that ∀t ∈ [0, 1],
d̃(t)µ̃d(t) = 0.

Finally, let us concentrate on Eqs.(17), (18), (20) and (21). Since ∀t ∈ [0, 1], s̃+(t) = s̃−(t) = 0, the
slackness conditions given by Eqs.(20) and (21) only require that ∀t ∈ [0, 1], µ̃s+(t), µ̃s−(t) ≥ 0. If we
now move to Eqs.(17) and (18), we get:

∀t ∈ [0, 1] ,
{

µ̃s+(t) = σ+u′(x̃(t))− λΣ

µ̃s−(t) = λΣ − σ−u′(x̃(t))
(C.7)

Since λΣ is free (see Eq.(14)), the non-negativity of µ̃s+(t) and µ̃s−(t) therefore requires that:

∀t ∈ [0, 1] , λΣ ∈
[
σ−u′(x̃(t)), σ+u′(x̃(t))

]
(C.8)

In order to show that such a λΣ exists, first recall that no storage occurs if x̄ ≤ x̃(t) ⇔ u′ (x̄) ≥ u′(x̃(t))

since u′′(x) < 0. Moreover, by Eq.(22), x̄ = (u′)
−1
(

σ+

σ−u′ (εMR)
)
. It follows that:

max
t∈[0,1]

σ−u′(x̃(t)) ≤ σ−u′ (x̄) = σ+u′ (εMR) (C.9)

Since x̃(t) = max {c̃, ε(t)R} ≤ max {c̃, εMR} and u′′(x) < 0, we can also say that:

min
t∈[0,1]

σ+u′(x̃(t)) ≥ σ+u′ (max {c̃, εMR}) (C.10)

Finally, since u′ (εMR) ≤ u′ (max {c̃, εMR}), we can define a λΣ which satisfies Eq.(C.8) given, for
instance, by:

λΣ = σ+

2 (u′ (εMR) + u′ (max {c̃, εMR})) (C.11)

Appendix D. Proof of Proposition 3

Point (i). We proceed in two steps. First, we construct the threshold x and exhibit its property. In a
second step, we show that there exists a unique c1 ∈ [x , x̄). satisfying Eq.(35).

Let us first study x which solves
∫ 1

0
s+(f(x), t)−S = 0. By Eqs.(33) and (34), we know that f(x) is

a bijection from (0,+∞) into (0,+∞). So, let us concentrate, by the definition of s+(y, t) (see Eq.(31)),
on:

φ(y) = 1
σ+

∫ 1

0

max {ε(t)R− y, 0} dt− S (D.1)
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If there exists a unique y > 0 solution to φ(y) = 0, then x = f−1(y) exists and is unique. Let us observe
that (i) ∀y ≥ εMR, φ(y) = −S and (ii) by our assumption (see Eq.(7)), limx→0 φ(y) =

R
σ+

∫ 1

0
ε(t)dt−S >

0. It therefore remains to verify that φ(y) is strictly decreasing on (0, εMR). From the property of
our cycle ε(t) on [0, 1] , we can construct, for each y ∈ (0, εMR), a unique couple of times T3(y) <
TM < T4(y) with the property that for i = 3, 4, ε(Ti)R = y. It follows that φ(y) becomes φ(y) =
1
σ+

∫ T4(y)

T3(y)
(ε(t)R− y) dt− S and :

φ′(y) = 1
σ+ (− (ε(t)R− y)|t=T3(x)︸ ︷︷ ︸

=0

T ′
3(x) + (ε(t)R− y)|t=T4(x)︸ ︷︷ ︸

=0

T ′
4(x)− (T4(x)− T3(x)) y) < 0 (D.2)

Let us now show that there exists a unique c̃b1 ∈ [ x , x̄) satisfying Eq.(35). So, define:

ϕ2(c) =

∫ 1

0

max {c− ε(t)R, 0} dt− σ−
∫ 1

0

1
σ+ max {ε(t)R− f(c), 0} dt−D (D.3)

From Eqs.(C.1) and (D.1), we observe that ϕ2(c) = ϕ1(c)− σ− (φ(f(c)) + S). Since, by Eq.(22), f(x̄) =
εMR and f ′(c) > 0, we can say, by Eq.(D.1), that ∀c ≥ x̄, φ(f(c)) = −S. It follows, by the condition
given by Eq.(28), that:

∀c ≥ x̄, ϕ2(c) =

∫ 1

0

max {c− ε(t)R, 0} dt−D ≥
∫ 1

0

max {x̄− ε(t)R, 0} dt−D > 0 (D.4)

Now let us consider c <x. Since f ′(c) > 0, we can state, by construction of φ (see Eq.(D.1)), that ∀c <x,
φ(f(c)) ≥ φ(f(x) = 0. Moreover, the condition given by Eq.(37) implies that ∀c <x, ϕ1(c) < σ−S and
it follows that ∀c < x, ϕ2(c) < σ−S − σ−S = 0. We can therefore claim that there exists c̃b1 solution
to ϕ2(c) = 0 with the property that c̃b1 ∈ [ x, x̄). Finally, from Eqs.(34),(C.4) and (D.2), we can say
∀c ∈ (x, x̄), ϕ′

2(c) > 0. This ensures uniqueness.

Points (ii) to (iv). We again neglect the superscript b of the case and show that our solution candidates
satisfy the sufficient optimality conditions of Proposition 1. So, let us set x̃(t) = min {max {c̃1, ε(t)R} , c̃2)}
and s̃+(t) = 1

σ+ max {ε(t)R− c̃2), 0} with c̃2 = f(c̃2) given by Eq.(33). The choice of d̃(t) and s̃−(t) (see
(iv) of Proposition 3) is less obvious due to multiple solutions. To solve this problem, we consider any
continuous and positive selections d̃(t) and s̃−(t) that verify the conditions given in (iv) of Proposition
3.7

The isoperimetrical constraints given by Eq.(10) are obviously satisfied. d̃(t) and s̃−(t) verify their
respective condition by construction of these selections. Moreover, since c̃1 ≥ x, the storage capacity is
not binding so that

∫ 1

0
s̃+(t) ≤ S.

Now let us set λ̃D = u′(c̃1), λ̃Σ = σ+u′(c̃2)) and λ̃S = 0 (so that condition (15) is satisfied). If we
now concentrate on the Lagrangian multipliers, we immediately obtain from Eqs (16) to (18) that:

∀t ∈ [0, 1] , µ̃d(t) = u′(c̃1)− u′ (x̃(t)) (D.5)

∀t ∈ [0, 1] , µ̃s+(t) = −σ+u′(c̃2) + σ+u′ (x̃(t)) (D.6)

∀t ∈ [0, 1] , µ̃s−(t) = σ+u′(c̃2)− σ−u′ (x̃(t)) (D.7)

It remains to show that the slackness conditions given by Eqs.(19) to (21) hold.

7Readers may wonder whether such selections exist. The example given by:

d̃(t) = D
D+σ−

∫ 1
0
s̃+(t)dt

max {c̃1 − ε(t)R, 0} and s̃−(t) =
∫ 1
0
s̃+(t)dt

D+σ−
∫ 1
0
s̃+(t)dt

max {c̃1 − ε(t)R, 0}

satisfy the conditions given in (iv) of Proposition 3.
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Concerning the non-negativity of these multipliers, recall first that x̃(t) = min {max {c̃1, ε(t)R} , c̃2}
and that c̃1 < c̃2. This implies that (i) x̃(t) = c̃1 if ε(t)R ≤ c̃1 and (ii) x̃(t) = min {ε(t)R, c̃2}, else. In
any case x̃(t),≥ c̃1 and since u′′(x) < 0, u′ (x̃(t)) ≤ u′ (c̃1). It follows from Eq.(D.5) that:

∀t ∈ [0, 1] , µ̃d(t) =

{
0 if ε(t)R ≤ c̃1
u′(c̃1)− u′ (x̃ (t)) , else ≥ 0 (D.8)

Since c̃1 < c̃2, we can also deduce, from the definition x̃(t), that (i) x̃(t) = c̃2 if ε(t)R ≥ c̃2 and (ii)
x̃(t) < c̃2, else. As u′′(x) < 0, we get u′ (x̃(t)) ≥ u′(c̃2)). Hence, Eq.(D.6) implies that:

∀t ∈ [0, 1] , µ̃s+(t) =

{
0 if ε(t)R ≥ c̃2
σ+ (u′ (x̃ (t))− u′(c̃2) , else ≥ 0 (D.9)

Finally, since c̃2 = (u′)
−1
(

σ−
σ+

u′(c̃1)
)
, Eq.(D.7) becomes:

∀t ∈ [0, 1] , µ̃s−(t) = σ−u′(c̃1)− σ−u′ (x̃(t)) = σ−µ̃d(t) ≥ 0 (D.10)

It remains to verify the three exclusion conditions. First,recall that the selections, d̃(t) and s̃−(t),
verify:

∀t ∈ [0, 1] , d(t) + σ−s−(t) = max {c̃1 − ε(t)R, 0} (D.11)

Since d̃(t), s̃−(t) ≥ 0, we can therefore claim that d̃(t) = s̃−(t) = 0 if ε(t)R ≥ c̃1. It follows respectively
by Eq.(D.8) and Eq.(D.10) that ∀t ∈ [0, 1] , µ̃d(t)d̃(t) = 0 and µ̃s−(t)s̃

−(t) = 0. Finally, since s̃+(t) =
1
σ+ max {ε(t)R− c̃2, 0}, we can say that s̃+(t) = 0 if c̃2 ≥ ε(t)R. Hence, by Eq.(D.9), ∀t ∈ [0, 1],
µ̃s+(t)s̃

+(t) = 0.

Appendix E. Proof of Proposition 4

Point (i). Let us start with the existence and uniqueness of c̃c2. From Eq.(41), c̃c2 solves φ(c̃c2) = 0
as defined in Eq.(D.1) of Appendix D. By using the first step of point (i) of the latter Appendix, we
immediately conclude that c̃c2 = f(x) with f(x) given by Eq.(33).

Now observe that c̃c1 solves ϕ3(c) = 0 with

ϕ3(c) =

∫ 1

0

max {c− ε(t)R, 0} dt− σ−S −D = ϕ1(c)−
(
D + σ−S

)
(E.1)

From (i) of Appendix C, we know that ϕ′
1(c) > 0; the same therefore holds for ϕ3(c). Moreover ϕ3(0) =

− (D + σ−S) < 0 and, with the condition given by Eq.(43), ϕ3(x) > 0. It follows that there exists a
unique c̃c1 <x solving this equation.

Points (ii) to (iv). To spare notation, we omit the superscript c of the case under consideration and, as
in Appendix D, we set x̃(t) = min {max {c̃1, ε(t)R} , c̃2} and s̃+(t) = 1

σ+ max {ε(t)R− c̃2, 0} and select
two continuous functions, d̃(t) and s̃−(t), that satisfy ∀t ∈ [0, 1], d̃(t) + σ−s̃−(t) = max {c̃1 − ε(t)R, 0},∫ 1

0
d̃(t)dt = D but now with

∫ 1

0
s̃−(t)dt = S. It follows that the isoperimetrical constraints given by

Eq.(10) are again satisfied, except that the storage constraint is now binding.
Since λ̃D and λ̃Σ are free (see Eqs.(13) and (14)), we set λ̃D = u′(c̃1) and λ̃Σ = σ−u′(c̃1). We now

fix λ̃S = σ−u′(c̃1)− σ−u′(c̃2). By Eq.( 40), we know that λ̃S ≥ 0 and, because the storage constraint is
binding, S(1) = 0. It follows that Eq.(15) is satisfied.

It follows, by Eqs.(16) to (18), that the Lagrangian multipliers are given by:

µ̃d(t) = u′(c̃1)− u′(x̃(t)) (E.2)

µ̃s+(t) = σ+ (u′(x̃(t))− u′(c̃2)) (E.3)

µ̃s−(t) = σ− (u′(c̃1)− u′(x̃(t))) = σ−µ̃d(t) (E.4)
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Concerning µ̃d(t), we can, since c̃1 < c̃2, apply the same argument as in Appendix D and obtain that:

∀t ∈ [0, 1] , µ̃d(t) =

{
0 if ε(t)R ≤ c̃1
u′(c̃1)− u′ (x̃ (t)) , else ≥ 0 (E.5)

From Eq.(E.4), we immediately observe that µ̃s−(t) ≥ 0. Finally, concerning µ̃s+(t), let us recall that
x̃(t) = min {max {c̃1, ε(t)R} , c̃2} and that c̃1 < c̃2. This implies that (i) x̃(t) = max {c̃1, ε(t)R} if
ε(t)R ≤ c̃2 and (ii) x̃(t) = c̃2 if ε(t)R > c̃2. In any case, x̃(t) ≤ c̃2, or u′ (x̃(t)) ≥ u′ (c̃2) since u′′(x) < 0.
It follows, from Eq.(E.3), that:

∀t ∈ [0, 1] , µ̃s+(t) =

{
σ+ (u′ (x̃ (t))− u′(c̃2) if ε(t)R < c̃2
0, else ≥ 0 (E.6)

It remains to verify the three exclusions conditions contained in Eqs.(19) to (21) hold. With the same
argument as in Appendix D, we conclude that ∀t ∈ [0, 1] , µ̃d(t)d̃(t) = 0 and µ̃s−(t)s̃

−(t) = 0. Finally,
since s̃+(t) = 1

σ+ max {ε(t)R− c̃2, 0}, we can say that s̃+(t) = 0 if c̃2 ≥ ε(t)R. Hence, by Eq.(E.6),
∀t ∈ [0, 1] , µ̃s+(t)s̃

+(t) = 0.

Appendix F. Consumption plateaus and comparative statics
Case (a): Without storage.

The derivative of Eq.(27) with respect to D is given by:8∫ T̃a
1

0

∂D c̃adt+ (c̃a − ε(t)R)|t=T̃a
1︸ ︷︷ ︸

=0

∂DT̃ a
1 +

∫ 1

T̃a
2

∂D c̃adt− (c̃a − ε(t)R)|t=T̃a
2︸ ︷︷ ︸

=0

∂DT̃ a
1 − 1 = 0 (F.1)

and from the definition of T̃ a
i , we know that (c̃a − ε(t)R)|t=T̃a

1
= (c̃a − ε(t)R)|t=T̃a

2
= 0. Moreover, ∂D c̃a

is independent of t and T̃ a
2 < 1. It follows that:

∂D c̃a
(
1 + T̃ a

1 − T̃ a
2

)
− 1 = 0 ⇔ ∂D c̃a =

(
1 + T̃ a

1 − T̃ a
2

)−1

> 0 (F.2)

Using a similar argument, the derivative of Eq.(27) with respect to R becomes:∫ T̃a
1

0

(∂Rc̃
a − ε(t)) dt+

∫ 1

T̃a
2

(∂Rc̃
a − ε(t)) dt = 0 (F.3)

We deduce that:

∂Rc̃
a =

(
1 + T̃ a

1 − T̃ a
2

)−1
(∫ T̃a

1

0

ε(t)dt+

∫ 1

T̃a
2

ε(t)dt

)
> 0 (F.4)

Case (b): With abundant storage.
First, let us substitute c̃b2 in Eq.(38) by its value given by Eq.(39). Using the definition of switching

times T̃ b
i i = 1, . . . , 4, the derivative of this new identity with respect to D is:∫ T̃ b

1

0

∂D c̃b1dt+
(
c̃b1 − ε(t)R

)∣∣
t=T̃ b

1︸ ︷︷ ︸
=0

∂DT̃ b
1 +

∫ 1

T̃ b
2

∂D c̃b1dt−
(
c̃b1 − ε(t)R

)∣∣
t=T̃ b

2︸ ︷︷ ︸
=0

∂DT̃ b
2

+σ−

σ+

∫ T̃ b
4

T̃ b
3

f ′(c̃b1)∂D c̃b1dt−
(
f(c̃b1)− ε(t)R

)∣∣
t=T̃ b

3︸ ︷︷ ︸
=0

∂DT̃ b
3 +

(
f(c̃b1)− ε(t)R

)∣∣
t=T̃ b

4︸ ︷︷ ︸
=0

∂DT̃ b
4 − 1 = 0 (F.5)

8To simplify notations, we omit in what follow, the argument (D,R) of the different functions unless
it is necessary for a better understanding.
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Since c̃b1 and ∂D c̃b1 are time-independent, we obtain:(
T̃ b
1 + 1− T̃ b

2 + σ−

σ+ (T̃ b
3 − T̃ b

4 )f
′(c̃b1)

)
∂D c̃b1 − 1 = 0 (F.6)

Now observe that f ′(c̃b1) is given by Eq.(34) and recall that u′′ < 0, T̃ b
2 < 1 and T̃ b

3 < T̃ b
4 . It follows that:

∂D c̃b1 =
u′′(c̃b2)

(1+T̃ b
1−T̃ b

2 )u′′(c̃b2)+

(
σ−

σ+

)2

(T̃ b
4−T̃ b

3 )u
′′(c̃b1)

> 0 (F.7)

We now compute the derivative of Eq.(38) with respect to R. Using the definition of the switching times
T̃ b
i i = 1, . . . , 4 and the fact that c̃b1 and ∂D c̃b1 are time-independent, we get that:

(
T̃ b
1 + 1− T̃ b

2 + σ−

σ+ (T̃ b
4 − T̃ b

3 )f
′(c̃b1)

)
∂Rc̃

b
1 −

∫ T̃ b
1

0

ε(t)dt−
∫ 1

T̃ b
2

ε(t)dt− σ−

σ+

∫ T̃ b
4

T̃ b
3

ε(t)dt = 0 (F.8)

Since u′′ < 0 and T̃ b
2 < 1, T̃ b

3 < T̃ b
4 , we can conclude that:

∂Rc̃
b
1 =

(∫ T̃ b
1

0 ε(t)dt+
∫ 1

T̃ b
2
ε(t)d+

σ−

σ+

∫ T̃ b
4

T̃ b
3

ε(t)dt

)
u′′(c̃b2)

(1+T̃ b
1−T̃ b

2 )u′′(c̃b2)+

(
σ−

σ+

)2

(T̃ b
4−T̃ b

3 )u
′′(c̃b1)

> 0 (F.9)

To obtain the derivatives of c̃b2 with respect to D and R, we simply use Eq.(39). By the chain rule,
we get ∂D c̃b2 = f ′(c̃b1)∂D c̃b1 and ∂Rc̃

b
2 = f ′(c̃b1)∂Rc̃

b
1. Since u′′ < 0 and T̃ b

2 < 1, T̃ b
3 < T̃ b

4 , it follows that:

∂D c̃b2 =
σ−

σ+ u′′(c̃b1)

(1+T̃ b
1−T̃ b

2 )u′′(c̃b2)+

(
σ−

σ+

)2

(T̃ b
4−T̃ b

3 )u
′′(c̃b1)

> 0 (F.10)

and

∂Rc̃
b
1 =

(∫ T̃ b
1

0 ε(t)dt+
∫ 1

T̃ b
2
ε(t)d+

σ−

σ+

∫ T̃ b
4

T̃ b
3

ε(t)dt

)
σ−

σ+ u′′(c̃b1)

(1+T̃ b
1−T̃ b

2 )u′′(c̃b2)+

(
σ−

σ+

)2

(T̃ b
4−T̃ b

3 )u
′′(c̃b1)

> 0 (F.11)

Case (c): With binding storage.
Since c̃c2 is not in Eq.(45) and vice-versa for c̃c1 and Eq.(46), we can work identity per identity. So if

we compute the derivative of Eq.(45) with respect to D we get:∫ T̃ c
1

0

∂D c̃c1dt+ (c̃c1 − ε(t)R)|t=T̃ b
1︸ ︷︷ ︸

=0

∂DT̃ c
1 +

∫ 1

T̃ c
2

∂D c̃c1dt− (c̃c1 − ε(t)R)|t=T̃ c
2︸ ︷︷ ︸

=0

∂DT̃ c
2 − 1 = 0 (F.12)

Since ∂D c̃c1 is independent of t and T̃ c
2 < 1, we can say that:

∂D c̃c1 = 1

(T̃ c
1+1−T̃ c

2 )
> 0 (F.13)

Now by differentiating with respect to R, we have:∫ T̃ c
1

0

(∂Rc̃
c
1 − ε(t)) dt+

∫ 1

T̃ c
2

(∂Rc̃
c
1 − ε(t)) dt = 0 ⇒ ∂Rc̃

c
1 =

∫ T̃ c
1

0 ε(t)dt+
∫ 1
T̃ c
2
ε(t)dt

(T̃ c
1+1−T̃ c

2 )
> 0 (F.14)

Finally, working with S gives the following:∫ T̃ c
1

0

∂S c̃
c
1dt+

∫ 1

T̃ c
2

∂S c̃
c
1dt− σ− = 0 ⇒ ∂S c̃

c
1 = σ−

(T̃ c
1+1−T̃ c

2 )
> 0 (F.15)
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If we now move to Eq.(46), we immediately observe that ∂D c̃c2 = 0. Moreover, the derivative of
Eq.(46) with respect to R is given by:∫ T̃ c

4

T̃ c
3

(ε(t)− ∂Rc̃
c
2) dt = 0 ⇒ ∂Rc̃

c
2 =

∫ T̃ c
4

T̃ c
3

ε(t)dt

T̃ c
4−T̃ c

3

> 0 (F.16)

By doing the same computation with respect to S, we get:∫ T̃ c
4

T̃ c
3

(−∂S c̃
c
2) dt− σ+ = 0 ⇒ ∂S c̃

c
2 = − σ+

T̃ c
4−T̃ c

3

< 0 (F.17)

Appendix G. Proof of Lemma 2

(i) Preliminary remarks
From the conditions given by Eqs.(26), (28), (37) and (43), and the upper bound on dispatchable

energy given by Eq.(8), we can say that the different energy mix domains corresponding to no-storage,
abundant storage and binding storage are respectively given by:

Ea =

{
e ∈ E :

∫ 1

0

max {x̄(e)− ε(t)R, 0} dt ≤ D ≤ R

∫ 1

0

(εM − ε(t)) dt

}
(G.1)

Eb =

{
e ∈ E :

∫ 1

0

max {x(e)− ε(t)R, 0} dt− σ−S ≤ D <

∫ 1

0

max {x̄(e)− ε(t)R, 0} dt
}

(G.2)

Ec =

{
e ∈ E : 0 ≤ D <

∫ 1

0

max {x(e)− ε(t)R, 0} dt− σ−S

}
(G.3)

with x̄(e) = f−1(εMR) = (u′)
−1
(

σ+

σ−u′ (εMR)
)

(see Eq.(22)) and x solving
∫ 1

0
s+(f(x(e)), t) − S = 0

(see (i) of Appendix D).
In addition, note that, by construction, x̄(e) and x(e) are continuous functions, but neither of them

takes D as an argument. This implies that the left and right terms of each inequality that define these
domains are independent of D. Now recall that εMR ≥ x̄(e) >x(e) > 0, it follows that:

R

∫ 1

0

(εM − ε(t)) dt ≥
∫ 1

0

max {x̄(e)− ε(t)R, 0} dt (G.4)

and ∫ 1

0

max {x̄− ε(t)R, 0} dt >
∫ 1

0

max {x(e)− ε(t)R, 0} dt− σ−S (G.5)

Finally, by condition (43), we know that:∫ 1

0

max {x(e)− ε(t)R, 0} dt− σ−S > 0 (G.6)

These observations first ensure that Ea, Eb and Ec form a partition of E . But they also say that (i) Ea

has boundary only with Eb given by
∫ 1

0
max {x̄(e)− ε(t)R, 0} dt = D, (ii) the boundary between Eb and

Ec is given by
∫ 1

0
max {x(e)− ε(t)R, 0} dt = D+σ−S and (iii) Ea and Ec has no common boundary. This

simplifies the proof of the continuity of c̃1 (e) and c̃b2 (e) since we only have to look at “what happens” on
each side of the common boundary.

(ii) Continuity of c̃1 (e) and c̃2 (e)

The boundary
∫ 1

0
max {x̄(e)− ε(t)R, 0} dt = D separates Ea from Eb. So let us consider two sequences

ean → e and ebn → e that verify ean ∈ Ea, ebn ∈ Eb and e is a point of this boundary. Let us show that
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(c̃1 (e
a
n) , c̃2 (e

a
n))n∈N and

(
c̃1
(
ebn
)
, c̃2
(
ebn
))

n∈N converge to the same vector (c̃1 (e) c̃2 (e)). Let us start
with the sequence (c̃1 (e

a
n) , c̃2 (e

a
n))n∈N. By construction, ∀e ∈ Ea, c̃2 (e

a) = εMR. Hence, c̃2 (e
a
n) →

c̃2 (e) = εMR. Concerning c̃1 (e
a
n), let us first observe by Eq.(C.1) that ϕ1(x̄(e)) = 0 so that c̃1 (e) =

x̄(e). Moreover, ∀n, c̃1 (e
a
n) solves ϕ1(c̃1 (e

a
n)) = 0. Since ϕ1 is continuous and admits a unique zero

(see (i) of Appendix C), we can say that c̃1 (e
a
n) → c̃1 (e) = x̄(e). Let us now move to the sequence(

c̃1
(
ebn
)
, c̃2
(
ebn
))

n∈N. From Eq.(D.3), we know that ∀n, ϕ2(c̃1
(
ebn
)
) = 0. Hence, by continuity of ϕ2, we

have ϕ2(c̃1 (e)) = 0. Since e belongs to the boundary, we can say that:

ϕ2(c̃1 (e)) = −σ−
∫ 1

0

1
σ+ max {ε(t)R− f(c̃1 (e)), 0} dt = 0 (G.7)

It follows that c̃b1 (e) ≥ f−1 (εMR) = x̄(e). But we also know that (see (i) of Proposition 3), ∀n, c̃1
(
ebn
)
≤

x̄(ebn) = f−1(εMRn). Hence, by pushing to the limit, continuity implies that c̃1 (e) ≤ x̄(e) = f−1(εMR).
In other words, we can conclude that c̃1

(
ebn
)
→ c̃1 (e) = x̄(e). Concerning c̃2

(
ebn
)
, let us recall, by

(i) of Proposition 3, that ∀n, c̃2
(
ebn
)
= f

(
c̃1
(
ebn
))

. As c̃1
(
ebn
)
→ x̄(e) = f−1(εMR), it follows that

c̃2
(
ebn
)
→ εMR.

Let now move to the boundary
∫ 1

0
max {x(e)− ε(t)R, 0} dt = σ−S + D that separates Eb from Ec

and let us consider two sequences ebn → e and ecn → e that verify ebn ∈ Eb, ecn ∈ Ec and e is a point
of this boundary. We start by studying

(
c̃1
(
ebn
)
, c̃2
(
ebn
))

n∈N. So let us observe, by Eq.(D.1), that
φ (f(x(e)) = 0. By Eq.(D.3) and the definition of the boundary under consideration, we can claim that:

ϕ2(x(e)) =

∫ 1

0

max {x(e)− ε(t)R, 0} dt− σ− (φ(f( x(e))) + S) = 0 (G.8)

It follows that c̃2 (e) =x(e). Uniqueness of the solution (see (i) of Appendix D) and continuity of ϕ2

ensure that c̃1
(
ebn
)
→ c̃1 (e) =x(e). Moreover, by continuity of f(c1), we get that c̃2

(
ebn
)
= f

(
c̃1
(
ebn
))

→
f (x(e)). Now, let us concentrate on (c̃1 (e

c
n) , c̃2 (e

c
n))n∈N. From Eq.(E.1) , we know that ∀n, ϕ3(c̃1 (e

c
n)) =

0. By continuity of ϕ3, this implies that, at the limit, c̃1 (e) solves:

ϕ3(c̃1 (e)) =

∫ 1

0

max {c̃c1 (e)− ε(t)R, 0} dt− σ−S −D = 0 (G.9)

As the solution to this equation is unique (see (i) of Appendix E), we deduce, from the definition of the
boundary under consideration that c̃1 (e) =x(e). Moreover, by continuity of ϕ3 and f , c̃1 (ecn) →x(e).
Finally, recall from (i) of Proposition 4 that c̃c2 (e

c
n) = f (x(ecn)). Hence, by continuity, c̃c2 (ecn) → c̃c2 (e) =

f (x(e)).
At that point, we can conclude that c̃1 (x) and c̃2 (x) are continuous functions. As the consumption

path writes x̃ (t, e) = min {max {c̃1(e), ε(t)R} , c̃2(e)}, this one is also a continuous function both in t and
e and the same holds for the consumer welfare W (e) =

∫ 1

0
u (x̃ (t, e)) dt.

(iii) The welfare function W (e)
Now we calculate the gradient of W (e). We begin by studying this gradient in each of the three cases

and verify, in a final step, that this one is globally continuous. The notation, particularly concerning
switching times, is the same as in Appendix F. We omit the arguments of the various functions in order
to lighten the notation.
Case (a): Without storage

In this case, W a =
(
T̃ a
1 + 1− T̃ a

2

)
u (c̃a)+

∫ T̃a
2

T̃a
1

u (ε(t)R) dt. Taking the derivative with respect to D,
we get the following.

∂DW a =
(
∂DT̃ a

1 − ∂DT̃ a
2

)
u(c̃a1) +

(
T̃ a
1 + 1− T̃ a

2

)
u′(c̃a1)∂D c̃a1 − ∂DT̃ a

1 u
(
ε(T̃ a

1 )R
)
+ ∂DT̃ a

2 u
(
ε(T̃2)R

)
=
(
T̃ a
1 + 1− T̃ a

2

)
u′(c̃a1)∂D c̃a1 (since ε(T̃ a

i )R = c̃a1 for i = 1, 2)

= u′(c̃a1) (see ∂D c̃a1 in Tab.1) (G.10)
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Working now with R, we obtain:

∂RW
a =

(
∂RT̃

a
1 − ∂RT̃

a
2

)
u(c̃a1) +

(
T̃ a
1 + 1− T̃ a

2

)
u′(c̃a1)∂Rc̃

a +

∫ T̃a
2

T̃a
1

u′(ε(t)R)ε(t)dt

−∂RT̃
a
1 u(ε(T̃

a
1 )R) + ∂RT̃

a
2 u

′(ε(T̃ a
2 )R)

=
(
1 + T̃ a

1 − T̃ a
2

)
u′(c̃a1)∂Rc̃

a
1 +

∫ T̃a
2

T̃a
1

u′(ε(t)R)ε(t)dt (since ε(T̃ a
1 )R = ε(T̃ a

2 )R = c̃a1)

= u′(c̃a1)

(∫ T̃a
1

0

ε(t)dt+

∫ 1

T̃a
2

ε(t)dt

)
+

∫ T̃a
2

T̃a
1

u′(ε(t)R)ε(t)dt (see ∂D c̃a1 in Tab.1)

=

∫ 1

0

u′ (max {c̃a1 , ε(t)R}) ε(t)dt (G.11)

Finally, by construction, ∂SW a = 0.

Case (b): With abundant storage

In this case, W b =
(
T̃ b
1 + 1− T̃ b

2

)
u
(
c̃b1
)
+
(
T b
4 − T b

3

)
u
(
c̃b2
)
+
∫ T̃ b

3

T̃ b
1

u (ε(t)R) dt +
∫ T̃ b

2

T̃ b
4

u (ε(t)R) dt.
Taking the derivative with respect to D, we get the following:

∂DW b =
(
∂DT̃ b

1 − ∂DT̃ b
2

)
u
(
c̃b1
)
+
(
T̃ b
1 + 1− T̃ b

2

)
u′ (c̃b1) ∂D c̃b1 +

(
∂DT b

4 − ∂DTB
3

)
u
(
c̃b2
)

+
(
T b
4 − T b

3

)
u′ (c̃b2) ∂D c̃b2 − ∂DT̃ b

1u
(
ε(T̃ b

1 )R
)
+ ∂DT̃ b

3u
(
ε(T̃ b

3 )R
)

−∂DT̃ b
4u
(
ε(T̃4)R

)
+ ∂DT̃ b

2u
(
ε(T̃ b

2 )R
)

(G.12)

Now note, by construction, that ε(T̃ b
i )R = c̃b1 for i = 1, 2 and ε(T̃ b

i )R = c̃b2 for i = 3, 4. It follows that:

∂DW b =
(
T̃ b
1 + 1− T̃ b

2

)
u′ (c̃b1) ∂D c̃b1 +

(
T b
4 − T b

3

)
u′ (c̃b2) ∂D c̃b2

= u′ (c̃b1) (T̃ b
1+1−T̃ b

2 )u
′′(c̃b2)+(T

b
4−T b

3 )
σ−

σ+ u′′(c̃b1)
u′(c̃b2)
u′(c̃bs)

(1+T̃ b
1−T̃ b

2 )u′′(c̃b2)+

(
σ−

σ+

)2

(T̃ b
4−T̃ b

3 )u
′′(c̃b1)

(see ∂D c̃b1, ∂D c̃b1 in Tab.2)

= u′ (c̃b1) (since
u′(c̃b2)
u′(c̃b1)

= σ−

σ+ ) (G.13)

Taking the derivative with respect to R, we get the following.

∂RW
b =

(
∂RT̃

b
1 − ∂RT̃

b
2

)
u
(
c̃b1
)
+
(
T̃ b
1 + 1− T̃ b

2

)
u′ (c̃b1) ∂Rc̃b1 + (∂RT b

4 − ∂RT
b
3

)
u
(
c̃b2
)

+
(
T b
4 − T b

3

)
u′ (c̃b2) ∂Rc̃b2 + ∫ T̃ b

3

T̃ b
1

u′ (ε(t)R) ε(t)dt− ∂RT̃
b
1u
(
ε(T̃ b

1 )R
)

+∂RT̃
b
3u
(
ε(T̃ b

3 )R
)
+

∫ T̃ b
2

T̃ b
4

u′ (ε(t)R) ε(t)dt− ∂RT̃
b
4u
(
ε(T̃ b

4 )R
)
+ ∂RT̃

b
2u
(
ε(T̃ b

2 )R
)

(G.14)

As ε(T̃ b
i )R = c̃b1 for i = 1, 2 and ε(T̃ b

i )R = c̃b2 for i = 3, 4, we obtain the following:

∂RW
b =

(
T̃ b
1 + 1− T̃ b

2

)
u′ (c̃b1) ∂Rc̃b1 + (T b

4 − T b
3

)
u′ (c̃b2) ∂Rc̃b2︸ ︷︷ ︸

=A

+

∫ T̃ b
3

T̃ b
1

u′ (ε(t)R) ε(t)dt+

∫ T̃ b
2

T̃ b
4

u′ (ε(t)R) ε(t)dt (G.15)
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If we now use the results of Tab.2 and the fact that
u′(c̃b2)
u′(c̃b1)

= σ−

σ+ , A becomes:

A =

(∫ T̃ b
1

0 ε(t)dt+
∫ 1

T̃ b
2
ε(t)d+

σ−

σ+

∫ T̃ b
4

T̃ b
3

ε(t)dt

)
u′(c̃b1)

(
u′′(c̃b2)(T̃

b
1+1−T̃ b

2 )+
σ−

σ+ u′′(c̃b1)(T
b
4−T b

3 )
u′(c̃b2)
u′(c̃b1)

)

(1+T̃ b
1−T̃ b

2 )u′′(c̃b2)+

(
σ−

σ+

)2

(T̃ b
4−T̃ b

3 )u
′′(c̃b1)

=

(∫ T̃ b
1

0

ε(t)dt+

∫ 1

T̃ b
2

ε(t)dt+ σ−

σ+

∫ T̃ b
4

T̃ b
3

ε(t)dt

)
u′ (c̃b1)

=

∫ T̃ b
1

0

u′ (c̃b1) ε(t)dt+ ∫ 1

T̃ b
2

u′ (c̃b1) ε(t)d+ ∫ T̃ b
4

T̃ b
3

u′ (c̃b2) ε(t)dt (G.16)

We can therefore say that:

∂RW
b =

∫ T̃ b
1

0

u′ (c̃b1) ε(t)dt+ ∫ 1

T̃ b
2

u′ (c̃b1) ε(t)d+ ∫ T̃ b
4

T̃ b
3

u′ (c̃b2) ε(t)dt
+

∫ T̃ b
3

T̃ b
1

u′ (ε(t)R) ε(t)dt+

∫ T̃ b
2

T̃ b
4

u′ (ε(t)R) ε(t)dt

=

∫ 1

0

u′ (min
{
max

{
c̃b1, ε(t)R

}
, c̃b2
})

ε(t)dt (since c̃b1 ≤ c̃b2) (G.17)

Finally, by construction, ∂SW b = 0.

Case (c): With binding storage

Like in the previous case, W c =
(
T̃ c
1 + 1− T̃ c

2

)
u (c̃c1)+(T c

4 − T c
3 )u (c̃

c
2)+

∫ T̃ c
3

T̃ c
1

u (ε(t)R) dt+
∫ T̃ c

2

T̃ c
4

u (ε(t)R) dt.
So if we take the derivative with respect to D, we obtain the same result as in Eq.(G.13). The same
simplifications apply since ε(T̃ c

i )R = c̃c1 for i = 1, 2 and ε(T̃ c
i )R = c̃c2 for i = 3, 4. But ∂D c̃c1 and ∂D c̃c2 are

now taken from Tab.3. It follows that:

∂DW c =
(
T̃ c
1 + 1− T̃ c

2

)
u′ (c̃c1) ∂D c̃c1 + (T c

4 − T c
3 )u

′ (c̃c2) ∂D c̃c2 = u′ (c̃c1) (G.18)

If we now move to the derivative with respect to R, the same simplifications apply as in Eq.(G.15) and
we get:

∂RW
c =

(
T̃ c
1 + 1− T̃ c

2

)
u′ (c̃c1) ∂Rc̃

c
1 + (T c

4 − T c
3 )u

′ (c̃c2) ∂Rc̃
c
2

+

∫ T̃ c
3

T̃ c
1

u′ (ε(t)R) ε(t)dt+

∫ T̃ c
2

T̃ c
4

u′ (ε(t)R) ε(t)dt (G.19)

By using now the results of Tab.3, we observe that:

∂RW
c =

∫ T̃ c
1

0

u′ (c̃c1) ε(t)dt+

∫ 1

T̃ c
2

u′ (c̃c1) ε(t)dt+

∫ T̃ c
4

T̃ c
3

u′ (c̃c2) ε(t)dt

+

∫ T̃ c
3

T̃ c
1

u′ (ε(t)R) ε(t)dt+

∫ T̃ c
2

T̃ c
4

u′ (ε(t)R) ε(t)dt

=

∫ 1

0

u′ (min {max {c̃c1, ε(t)R} , c̃c2}) ε(t)dt (since c̃b1 ≤ c̃b2) (G.20)

Finally, if we move to the derivative with respect to S, we obtain, by applying the same simplifications
that:

∂SW
c =

(
T̃ c
1 + 1− T̃ c

2

)
u′ (c̃c1) ∂S c̃

c
1 + (T c

4 − T c
3 )u

′ (c̃c2) ∂S c̃
c
2 (G.21)
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Using again Tab.3, we can say that:

∂SW
c = σ−u′ (c̃c1)− σ+u′ (c̃c2) = u′ (c̃c1)σ

+

(
σ−

σ+ − u′(c̃c2)

u′(c̃c1)

)
(G.22)

Pooling together these results
By Eqs.(G.10), (G.13) and (G.18), ∂DV = u′ (c̃1). Moreover, by our extension of c̃2 to case (a), we

can say, by Eqs.(G.11), (G.17) and (G.20), that ∂RW =
∫ 1

0
u′ (min {max {c̃1, ε(t)R} , c̃2}) ε(t)dt. By Eqs.

(22), (32) and (40), we know that in case (a) σ−

σ+ < u′(εMR)

u′(c̃a1)
, in case (b) σ−

σ+ =
u′(b̃c2)
u′(b̃c1)

and in case (c)

σ−

σ+ >
u′(c̃c2)

u′(c̃c1)
. We can therefore say that ∂SW = max

{
u′ (c̃1)σ

+
(

σ−

σ+ − u′(c̃2)
u′(c̃1)

)
, 0
}

. Finally, we know

that c̃1 and c̃2 are continuous functions, meaning that the gradient of W is also continuous.

Appendix H. Proof of Proposition 5

The proofs of points (i) and (iii) directly follow from our discussion while, for point (ii), it remains
to show that cns(e) ≤ c̃1(e) and that Eq.(52) holds.
(i) cns(e) ≤ c̃1(e)

Let us first recall the definition of cns(e). We consider an energy mix e ∈ Eb ∪ Ec and assume that
storage is not allowed. This consumption plateau therefore solves ϕ1(c) =

∫ 1

0
max {c− ε(t)R, 0} dt−D =

0. From our previous results in (i) of Appendix C and the fact that limc→0 ϕ1(c) = −D, we can conclude
that cns(e) is well-defined for each e ∈ Eb ∪ Ec.

Now let us recall, respectively, from (i) of Appendix D and Appendix E that c̃1(e) either solves
ϕ2(c) = ϕ1(c) − σ− (φ(f(c)) + S) = 0 or ϕ3(c) = ϕ1(c) − σ−S = 0. Now observe that ϕ2(c

ns(e)) =
−σ− (φ(f(cns(e))) + S) ≤ 0 and ϕ3(c

ns(e)) = −σ−S ≤ 0. As both ϕ2(c) and ϕ3(c) are increasing in c,
we can conclude that ∀e ∈ Eb ∪ Ec, cns(e) ≤ c̃1(e).
(ii) The construction of Eq.(52)

As usual, let us first introduce the following switching times Tns
i (e) = ε−1

(
cns(e)

R

)
, i = 1, 2, T̃i(e) =

ε−1
(

c̃1(e)
R

)
, i = 1, 2 and T̃ b

i (e) = ε−1
(

c̃2(e)
R

)
, i = 3, 4. From (i) and since we know that c̃1(e) < c̃2(e),

we have that, Tns
1 (e) < T̃1(e) < T̃3(e) < T̃4(e) < T̃2(e) < Tns

2 (e).
Let us now move to the computation of Eq.(52). By neglecting e in the later notation, we know, by

Eq.(50), that:

∆Wns

∆R = −u′ (cns)

∫ 1

0

ε(t)dt+

∫ Tns
1

0

u′ (cns) ε(t)dt+

∫ Tns
2

Tns
1

u′ (ε(t)R) ε(t)dt+

∫ 1

Tns
2

u′ (cns) ε(t)dt

= −u′ (cns)

∫ Tns
2

Tns
1

ε(t)dt+

∫ Tns
2

Tns
1

u′ (ε(t)R) ε(t)dt (H.1)

and

∆W
∆R = −u′ (c̃1)

∫ 1

0

ε(t)dt+

∫ T̃1

0

u′ (c̃1) ε(t)dt+

∫ T̃3

T̃1

u′ (ε(t)R) ε(t)dt+

∫ T̃4

T̃3

u′ (c̃2) ε(t)dt

+

∫ T̃2

T̃4

u′ (ε(t)R) ε(t)dt+

∫ 1

T̃2

u′ (c̃1) ε(t)dt

= −u′ (c̃1)

∫ T̃2

T̃1

ε(t)dt+

∫ T̃3

T̃1

u′ (ε(t)R) ε(t)dt+

∫ T̃4

T̃3

u′ (c̃2) ε(t)dt+

∫ T̃2

T̃4

u′ (ε(t)R) ε(t)dt (H.2)
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By computing the difference, we get, after reorganization and simplification, that:

∆Wns

∆R − ∆W
∆R =

∫ T̃1

Tns
1

(u′ (ε(t)R)− u′ (cns)) ε(t)dt+ (u′ (c̃1)− u′ (cns))

∫ T̃2

T̃1

ε(t)dt

+

∫ Tns
2

T̃2

(u′ (ε(t)R)− u′ (cns)) ε(t)dt+

∫ T̃4

T̃3

(u′ (ε(t)R)− u′ (c̃2)) ε(t)dt (H.3)

By grouping together the first three terms (recall that cns ≤ c̃1) and using the definition of c̃2, we finally
get that:

∆Wns

∆R − ∆W
∆R =

∫ 1

0

(u′ (max {min {c̃1, ε(t)R} , cns})− u′ (cns)) ε(t)dt

+

∫ 1

0

(u′ (max {c̃2, ε(t)R})− u′ (c̃2)) ε(t)dt (H.4)

Appendix I. The representative agent assumption

Consider the following optimization problem:

U(X) = max
(xi)ni=1≥0,

n∑
i=1

ui(x) s.t.
n∑

i=1

xi = X (I.1)

Assume that ∀i, u′
i(x) > 0, u′′

i (x) > 0, limx→0 u
′
i(x) = +∞, limx→+∞ u′

i(x) = 0 and let us show that
U(X) has the same properties. If λ denotes the Lagrangian multiplier, the first order necessary and
sufficient optimality conditions are given by ∀i = 1, . . . , n, u′

i(xi) = λ and
∑n

i=1 xi = X. By solving this
set of equations, we construct (xi(X))

n
i=1 and λ(X). It follows that:

U ′(X) =

n∑
i=1

u′
i (xi(X))x′

i(X) = λ(X)

n∑
i=1

x′
i(X) = λ(X) > 0 (I.2)

since
∑n

i=1 xi(X) = X. So,
∑n

i=1 x
′
i(X) = 1. Moreover, if we differentiate the first order conditions, we

get: {
∀i = 1, . . . , n, u′′

i (xi)dxi = dλ∑n
i=1 dxi = dX

(I.3)

⇔

 ∀i = 1, . . . , n, dxi

dX = 1
u′′
i (xi)

u′′
i (xi)

(∑n
i=1

1
u′′
i (xi)

)−1

> 0

dλ
dX =

(∑n
i=1

1
u′′
i (xi)

)−1

< 0
(I.4)

It follows that U ′′(X) = λ′(X) < 0. It remains to verify the Inada conditions. First, suppose that X → 0,
then, by the constraint, ∀i, xi → 0. As limx→0 u

′
i(x) = +∞, the first order conditions say that λ → +∞

and Eq.(I.2) leads to limX→0 U
′(X) = +∞. Now, suppose that X → +∞, then for at least one of i,

xi → +∞. As limx→+∞ u′
i(x) = 0, then, with the same argument, λ → 0 and limX→+∞ U ′(X) = 0.

39


	Introduction
	The model
	The optimal electricity consumption path 
	Conversion losses vs. storage
	Optimal consumption with abundant storage
	Binding storage capacity
	Energy mix and consumers' welfare
	The consumer welfare function
	The welfare effect of energy transition on consumers

	Further discussions
	The energy portfolio choice
	Electricity tariffs along the cycle
	Back to the representative consumer assumption

	Concluding remarks
	Proof of Lemma 1
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Consumption plateaus and comparative statics
	Proof of Lemma 2 
	Proof of Proposition 5
	The representative agent assumption

